Skip to main content
Log in

Crystallization and failure behavior of Ta-TM (TM=Fe, Co) nanostructured/amorphous diffusion barriers for copper metallization

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work examined the thin-film properties and diffusion barrier behavior of sputtered Ta-TM (TM=Fe, Co) films, aiming at depositing a highly crystallization-resistant and conductive diffusion barrier film for Cu metallization. Four-point probe measurement, x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a secondary ion mass spectrometer (SIMS) were used to examine the barrier properties. Structural examination indicated that intermetallic-compound-free amorphous Ta-TM films were obtained by magnetron sputtering, thus giving a resistivity of 146.82 µΩ-cm and 247.01 µΩ-cm for Ta0.5Fe0.5 and Ta0.5Co0.5 films, respectively. The Si/Ta0.5Fe0.5/Cu and Si/Ta0.5Co0.5/Cu stacked samples were observed to fail completely at temperature above 650°C and 700°C because of the formation of Cu3Si protrusions between silicon and the Ta-TM interface. Ta0.5Co0.5 is thus superior to Ta0.5Fe0.5 in preventing copper from diffusion. Highly thermally stabilized amorphous Ta-TM thin film can thus be potentially adopted as a diffusion barrier for Cu metallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. McBrayer, R.M. Swanson, and T.W. Sigmon, J. Electrochem. Soc. 133, 1242 (1986).

    Article  CAS  Google Scholar 

  2. C.Y. Chen, J.S. Jeng, and J.S. Chen, Thin Solid Films 420, 398 (2002).

    Article  Google Scholar 

  3. S.R. Burgess, H. Donohue, K. Buchanan, N. Rimmer, and P. Rich, Microelectron. Eng. 64, 307 (2002).

    Article  CAS  Google Scholar 

  4. Y.J. Lee, B.S. Suh, and C.O. Park, Thin Solid Films 357, 237 (1999).

    Article  CAS  Google Scholar 

  5. T. Laurila, J. Molarius, and J.K. Kivilahti, Microelectron. Eng. 71, 301 (2004).

    Article  CAS  Google Scholar 

  6. H. Ono, T. Nakano, and T. Ohta, appl. Phys. Lett. 64, 1511 (1994).

    Article  CAS  Google Scholar 

  7. S.Y. Jang, S.M. Lee, and H.K. Baik, J. Mater. Sci. 7, 271 (1991).

    Google Scholar 

  8. W.H. Lee, Y.L. Kuo, H.J. Huang, and C. Lee, Mater. Chem. Phys. 85, 444 (2004).

    Article  CAS  Google Scholar 

  9. C.A. Chang, J. Appl. Phys. 67, 6184 (1990).

    Article  CAS  Google Scholar 

  10. H. Kizil and C. Steinbruchel, Thin Solid Films 449, 158 (2004).

    Article  CAS  Google Scholar 

  11. M.-A. Nicolet, Appl. Surf. Sci. 91, 269 (1995).

    Article  CAS  Google Scholar 

  12. P.Y. Lee and J.L. Yang, Mater. Sci. Eng. A226, 43 (1997).

    Google Scholar 

  13. G. Briskin, J. Pelleg, and M. Talinaker, Thin Solid Films 288, 132 (1996).

    Article  CAS  Google Scholar 

  14. J.S. Fang, T.P. Hsu, and G.S. Chen, J. Electron. Mater. 33, 1176 (2004).

    Article  CAS  Google Scholar 

  15. H. Katsumata, Y. Makita, N. Kobayashi, M. Hasegawa, H. Shibata, and S. Uekusa. Thin Solid Films 281, 252 (1996).

    Article  Google Scholar 

  16. J.P. Chu, S.F. Wang, S.J. Lee, and C.W. Chang, J. Appl. Phys. 88, 6086 (2000).

    Article  CAS  Google Scholar 

  17. J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O’Keefe, B. Johnson, and C.H. Kuo, Phys. Rev. B69, 113410 (2004).

    Google Scholar 

  18. C.L. Chien, S.H. Liou, B.K. Ha, and K.M. Unruh, J. Appl. Phys. 57, 3593 (1985).

    Google Scholar 

  19. S.T. Lin, Y.L. Kuo, and C. Lee, Appl. Surf. Sci. 220, 349 (2003).

    Article  CAS  Google Scholar 

  20. G.S. Chen and S.T. Chen, J. Appl. Phys. 87, 8473 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J.S., Hsu, T.P. & Chen, G.S. Crystallization and failure behavior of Ta-TM (TM=Fe, Co) nanostructured/amorphous diffusion barriers for copper metallization. J. Electron. Mater. 35, 15–21 (2006). https://doi.org/10.1007/s11664-006-0178-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0178-x

Key words

Navigation