Skip to main content
Log in

Electrical properties of titanium-HgCdTe contacts

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transfer length method (TLM) structures were fabricated to characterize the Ti-HgCdTe contacts. Low-temperature measurement of contact resistance was found to be affected by the background-generated carriers in long wavelength infrared HgCdTe material. Measurements carried out by keeping the TLM structures behind a cold shield showed low contact resistance indicative of the formation of a good “Ohmic” contact. Low specific contact resistance of the order of 10−4 Ω-cm2 makes this contact scheme suitable for the fabrication of photoconductive as well as photovoltaic HgCdTe detectors. Annealing the contacts in air at 60°C for 15 days yielded the specific contact resistance values of the same order of magnitude at room temperature; however, low-temperature measurements show a minor change in the specific contact resistance. The current-voltage measurements show that current transport is dominated by the thermionic field emission mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1969).

    Google Scholar 

  2. G.D. Davis, W.A. Beck, Y.W. Mo, D. Kilday, and G. Margaritondo, J. Appl. Phys. 61, 5191 (1987).

    Article  CAS  Google Scholar 

  3. G.D. Davis, J.T. McKinley, D.G. Mildly, and G. Margaritondo, J. Appl. Phys. 65, 3435 (1989).

    Article  CAS  Google Scholar 

  4. G.P. Carey, A.K. Wahi, D.J. Friedman, C.E. McCants, and W.E. Spicer, J. Vac. Sci. Technol. A7, 483 (1991).

    Google Scholar 

  5. W.E. Spicer, J. Vac. Sci. Technol. A8, 1174 (1990).

    Google Scholar 

  6. Patrick W. Leech and Geoffrey K. Reeves, J. Vac. Sci. Technol. A10, 105 (1992).

    Google Scholar 

  7. Patrick W. Leech and Martyn H. Kibel, J. Vac. Sci. Technol. B9, 1770 (1991).

    Google Scholar 

  8. V. Krishnamurthy, A. Simons, and C.R. Helms, J. Vac. Sci. Technol. A8, 1147 (1990).

    Google Scholar 

  9. A. Wall, A. Raisanen, S. Chang, P. Philip, A. Franciosi, and D.J. Peterman, J. Vac. Sci. Technol. A5, 3193 (1987).

    Google Scholar 

  10. Abhishek Motayed, Ravi Bathe, Mark C. Wood, Ousmane S. Diouf, R.D. Vispute, and S. Noor Mohammad, J. Appl. Phys. 93, 1087 (2003).

    Article  CAS  Google Scholar 

  11. Ja-Soon Jang, Chang-Won Lee, Seong-Ju Park, TAE-Yeon Seong, and I.T. Ferguson, J. Electron. Mater. 31, 903 (2002).

    CAS  Google Scholar 

  12. Ja-Soon Jang, Kyun Hyung Park, Hong-kyu Jang, Hyo-Gun Kim, and Seong Ju Park, J. Vac. Sci. Technol. B16, 3105 (1998).

    Google Scholar 

  13. Semiconductor Material and Device Characterization, ed. Dieter K. Schroeder (New York: John Wiley & Sons Inc., 1990), pp. 114–127.

    Google Scholar 

  14. E.H. Rhoderick, Metal Semiconductor Contacts (Oxford, United Kingdom: Oxford University Press, 1978), pp. 77–115.

    Google Scholar 

  15. Narrow Gap Cadmium Based Compounds, ed. Peter Capper, EMIS Data Reviews Series, No. 10 (IEE, INSPEC, UK) 1994, pp. 215–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastav, V., Pal, R., Sharma, B.L. et al. Electrical properties of titanium-HgCdTe contacts. J. Electron. Mater. 34, 225–231 (2005). https://doi.org/10.1007/s11664-005-0208-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0208-0

Key words

Navigation