Skip to main content
Log in

Influence of arsenic on the atomic structure of the Si(112) surface

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The surface science techniques of low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM) have been used to characterize the clean Si(112) surface and the influence of an As monolayer on the properties and structure of the surface. In agreement with previous studies, the clean surface is found by both LEEd and atomically resolved STM images to be unstable with respect to faceting into other stable planes. Procedures for in-situ deposition of As onto clean Si surfaces were devised and XPS results show that approximately one monolayer of As can be deposited free of any contamination. The As/Si(112) surface is characterized by a sharper LEED pattern than for the clean surface and by STM images characterized by long rows along the \([\bar 110]\) direction with a regular width of 1.9 nm. This is consistent with a doubling of the periodicity in the \([11\bar 1]\) direction of the bulk-terminated unit cell. This implies that As yields a stable but reconstructed Si(112) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. de Lyon, J.E. Jensen, M.D. Gorwitz, C.A. Cockrum, S.M. Johnson, and G.M. Venzor, J. Electron. Mater. 28, 705 (1999).

    Google Scholar 

  2. R. Sporken, S. Sivananthan, K.K. Mahavadi, G. Monfroy, and M. Bourerche, Appl. Phys. Lett. 55, 1879 (1989).

    Article  CAS  Google Scholar 

  3. Y. Xin, N.D. Browning, S. Rujirawat, S. Sivananthan, Y.P. Chen, P.D. Nellist, and S.J. Pennycook, J. Appl. Phys. 84, 4292 (1998).

    Article  CAS  Google Scholar 

  4. Y.P. Chen, J.P. Faurie, S. Sivananthan, G.C. Hua, and N. Otsuka, J. Electron. Mater. 24, 475 (2005).

    Google Scholar 

  5. Y.P. Chen, J.P. Faurie, and S. Sivananthan, J. Electron. Mater. 22, 951 (1993).

    CAS  Google Scholar 

  6. T.J. de Lyon, S.M. Johnson, C.A. Cockrum, O.K. Wu, W.J. Hamilton, and G.S. Kamath, J. Electrochem. Soc. 141, 2888 (2004).

    Article  Google Scholar 

  7. M. Kawano, A. Ajisawa, N. Oda, M. Nagashima, and H. Wada, Appl. Phys. Lett. 69, 2876 (1996).

    Article  CAS  Google Scholar 

  8. A. Million, N.K. Dhar, and J.H. Dinan, J. Cryst. Growth 159, 76 (1996).

    Article  CAS  Google Scholar 

  9. S. Rujirawat, D.J. Smith, J.P. Faurie, G. Neu, V. Nathan, and S. Sivananthan, J. Electron. Mater. 27, 1047 (1998).

    CAS  Google Scholar 

  10. B. Yang, Y. Xin, S. Rujirawat, N.D. Browning, and S. Sivananthan, J. Appl. Phys. 88, 115 (2000).

    Article  CAS  Google Scholar 

  11. T.J. de Lyon, D. Rajavel, S.M. Johnson, and C.A. Cockrum, Appl. Phys. Lett. 66, 2119 (2005).

    Article  Google Scholar 

  12. S.L. Wright, M. Inada, and H. Kroemer, J. Vac. Sci. Technol. 21, 534 (1982).

    Article  CAS  Google Scholar 

  13. N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).

    CAS  Google Scholar 

  14. N.K. Dhar, C.E.C. Wood, A. Gray, H.Y. Wei, L. Salamanca-Riba, and J.H. Dinan, J. Vac. Sci. Technol. B 14, 2366 (1996).

    Article  CAS  Google Scholar 

  15. J.D. Browski and H.-J. Müssig, Silicon Surfaces and Formation of Interfaces—Basic Science in the Industrial World (Hackensack, NJ: World Scientific, 2000).

    Google Scholar 

  16. R. Kaplan, Surf. Sci. 116, 104 (1982).

    Article  CAS  Google Scholar 

  17. B.Z. Olshanetsky and V.I. Mashanov, Surf. Sci. 111, 414 (1981).

    Article  Google Scholar 

  18. S.L. Wright, H. Kroemer, and M. Inada, J. Appl. Phys. 55, 2916 (1984).

    Article  CAS  Google Scholar 

  19. Y. Yang and E.D. Williams, Surf. Sci. 215, 102 (1989).

    Article  CAS  Google Scholar 

  20. Th. Berghaus, A. Brodde, H. Neddermeyer, and St. Tosch, Surf. Sci. 184, 273 (1987).

    Article  CAS  Google Scholar 

  21. X.-S. Wang and W.H. Weinberg, Surf. Sci. 314, 71 (2004).

    Article  Google Scholar 

  22. D.J. Chadi and J.R. Chelikowsky, Phys. Rev. B 24, 4892 (1981).

    Article  CAS  Google Scholar 

  23. D.J. Chadi, Phys. Rev. B 29, 785–792 (1984).

    Article  CAS  Google Scholar 

  24. C.H. Grein, J. Cryst. Growth, 180, 54 (1997).

    Article  CAS  Google Scholar 

  25. S. Makefors, Surf. Sci. 443, 99 (1999).

    Article  Google Scholar 

  26. A.A. Baski and L.J. Whitman, Phys. Rev. Lett. 74, 956 (2005)

    Article  Google Scholar 

  27. A.A. Baski, S.C. Erwin, and L.J. Whitman, Surf. Sci. 393, 69 (1997).

    Article  Google Scholar 

  28. V.G. Lifshits, A.A. Saranin, and A.V. Zotov, Surface Phases on Silicon (New York: Wiley, 2004), pp. 85–90.

    Google Scholar 

  29. M. Copel, R.M. Tromp, and U.K. Kohler, Phys. Rev. B 37, 10756 (1988).

    Article  CAS  Google Scholar 

  30. C. Fulk, R. Sporken, B. Gupta, I. Batra, D. Zavitz, J. Dumont, M. Trenary, N. Dhar, J. Dinan, and S. Sivananthan, J. Electron. Mater. 34, 846 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavitz, D.H., Evstigneeva, A., Singh, R. et al. Influence of arsenic on the atomic structure of the Si(112) surface. J. Electron. Mater. 34, 839–845 (2005). https://doi.org/10.1007/s11664-005-0029-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0029-1

Key words

Navigation