Skip to main content
Log in

Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015–1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Miller, IBM J. Res. Develop. 13, 239 (1969).

    Article  CAS  Google Scholar 

  2. M.E. Loomans, S. Vaynaman, G. Ghosh, and M.E. Fine, J. Electron. Mater. 23, 741 (1994).

    CAS  Google Scholar 

  3. A.A. Liu, H.K. Kim, K.N. Tu, and P.A. Totta, J. Appl. Phys. 80, 2774 (1996).

    Article  CAS  Google Scholar 

  4. H.K. Kim, K.N. Tu, and P.A. Totta, Appl. Phys. Lett. 68, 2204 (1996).

    Article  CAS  Google Scholar 

  5. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin, and C.R. Kao, J. Electron. Mater. 29, 1175 (2000).

    Article  CAS  Google Scholar 

  6. C.E. Ho, L.C. Shiau, and C.R. Kao, J. Electron. Mater. 31, 1264 (2002).

    CAS  Google Scholar 

  7. K.L. Lin and Y.C. Liu, IEEE Trans. Comp. Packaging 22, 575 (1999).

    CAS  Google Scholar 

  8. J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung, and C.S. Kang, J. Electron. Mater. 30, 1165 (2001).

    CAS  Google Scholar 

  9. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  Google Scholar 

  10. B.L. Young and J.G. Duh, J. Electron. Mater. 30, 878 (2001).

    CAS  Google Scholar 

  11. S.K. Kang et al., Proc. 51st Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 2001), pp. 448–454.

    Book  Google Scholar 

  12. R.G. Werner, D.R. Frear, J. DeRosa, and E. Sorongon, 1999 Int. Symp. on Advanced Packaging Materials (Reston, VA: IMAPS; Piscataway, NJ: IEEE, 1999), pp. 246–251.

    Google Scholar 

  13. C.S. Huang, J.G. Duh, Y.M. Chen, and J.H. Wang, J. Electron. Mater. 32, 89 (2003).

    Article  CAS  Google Scholar 

  14. C.S. Huang and J.G. Duh, J. Mater. Res. 18, 935 (2003).

    CAS  Google Scholar 

  15. J.I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis (New York: Plenum Press, 1992), pp. 306–330.

    Google Scholar 

  16. C.S. Huang, G.Y. Jang, and J.G. Duh, J. Electron. Mater. 32, 1273 (2003).

    Article  CAS  Google Scholar 

  17. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996).

    Article  CAS  Google Scholar 

  18. Y.C. Hsu and J.G. Duh, J. Electron. Mater., in press.

  19. C.H. Lin, S.W. Chen, and C.H. Wang, J. Electron. Mater. 31, 907 (2002).

    CAS  Google Scholar 

  20. K.N. Tu and K. Zeng, Mater. Sci. Eng. R 34, 1 (2001).

    Article  Google Scholar 

  21. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan, and P. Elenius, J. Mater. Res. 17, 1612 (2002).

    CAS  Google Scholar 

  22. K. Zeng, V. Vuorinen, and J.K. Kivilahti, Proc. 51st Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 2001), pp. 693–698.

    Book  Google Scholar 

  23. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    CAS  Google Scholar 

  24. W.T. Chen, C.E. Ho, and C.R. Kao, J. Mater. Res. 17, 263 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CS., Jang, GY. & Duh, JG. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps. J. Electron. Mater. 33, 283–289 (2004). https://doi.org/10.1007/s11664-004-0134-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0134-6

Key words

Navigation