Skip to main content
Log in

Study of schottky barrier heights of indium-tin-oxide on p-GaN using x-ray photoelectron spectroscopy and current-voltage measurements

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the current density-voltage (J-V) characteristic of Schottky diodes of indium-tin-oxide (ITO) contacts to p-type GaN (p-GaN) has been investigated. The calculated barrier-height value of ITO/p-GaN samples using the thermionic field-emission (TFE) model is 3.2 eV, which implies that the work function of ITO is equal to 4.3 eV. The result is supported by J-V measurements of ITO/n-type GaN Schottky diodes. On the other hand, the barrier height of ITO/p-GaN was also determined from x-ray photoelectron spectroscopy (XPS) data. The analysis of the XPS spectral shifts indicated that this observed barrier-height value of ITO/p-GaN by XPS is in good agreement with the value of 3.2 eV obtained from J-V measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Y. Kim, H.W. Jang, and J.L. Lee, Appl. Phys. Lett. 82, 61 (2003).

    Article  CAS  Google Scholar 

  2. R.H. Horng, D.S. Wuu, Y.C. Lien, and W.H. Lan, Appl. Phys. Lett. 79, 2925 (2001).

    Article  CAS  Google Scholar 

  3. N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, Appl. Phys. Lett. 79, 2838 (2001).

    Article  CAS  Google Scholar 

  4. T. Margalith, O. Buchinsky, D.A. Cohen, A.C. Abare, M. Hansen, S.P. DenBaars, and L.A. Coldren, Appl. Phys. Lett. 74, 3930 (1999).

    Article  CAS  Google Scholar 

  5. J.K. Shen, Y.K. Su, G.C. Chi, M.J. Jou, and C.M. Chang, Appl. Phys. Lett. 72, 3317 (1998).

    Article  Google Scholar 

  6. T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Naagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike, Appl. Phys. Lett. 69, 3537 (1996).

    Article  CAS  Google Scholar 

  7. H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, J. Appl. Phys. 81, 1315 (1997).

    Article  Google Scholar 

  8. L.S. Yu, D. Qiao, L. Jia, S.S. Lau, Y. Qi, and K.M. Lau, Appl. Phys. Lett. 79, 4536 (2001).

    Article  CAS  Google Scholar 

  9. J.K. Ho, C.S. Jong, C.N. Huang, C.C. Chiu, K.K. Shih, L.C. Chen, F.R. Chen, and J.J. Kai, J. Appl. Phys. 86, 4491 (1999).

    Article  CAS  Google Scholar 

  10. M. Shur, Physics of Semiconductor Devices (Englewood Cliffs, NJ: Prentice-Hall, 1990), pp. 204–209.

    Google Scholar 

  11. H. Morkoç, Nitride Semiconductors and Devices (Berlin: Springer, 1999), pp. 198–200.

    Google Scholar 

  12. C. Merz, M. Kunzer, U. Kaufmann, I. Akasaki, and H. Amano, Semicond. Sci. Technol. 11, 712 (1996).

    Article  CAS  Google Scholar 

  13. M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996).

    Article  CAS  Google Scholar 

  14. J.I. Pankove, S. Bloom, and G. Harbeke, RCA Rev. 36, 163 (1975).

    CAS  Google Scholar 

  15. H. Nakayama, P. Hacke, M.R.H. Khan, T. Detch-Prohm, K. Hiramatsu, and N. Sawaki, Jpn. J. Appl. Phys. 35, L282 (1996).

    Google Scholar 

  16. J.S. Kwak, O.H. Nam, and Y. Park, Appl. Phys. Lett. 80, 3554 (2002).

    Article  CAS  Google Scholar 

  17. P. Kozodoy, H. Xing, S.P. DenBaars, U.K. Mishira, A. Saxler, R. Perrin, S. Elhamri, and W.C. Mitchel, J. Appl. Phys. 87, 1832 (2000).

    Article  CAS  Google Scholar 

  18. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Plenum Press, 1984), pp. 2–8.

    Google Scholar 

  19. S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Appl. Phys. Lett. 73, 809 (1998).

    Article  CAS  Google Scholar 

  20. D.J. Milliron, I.G. Hill, C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys. 87, 572 (2000).

    Article  CAS  Google Scholar 

  21. F. Nüesch, L.J. Rothberg, E.W. Forsythe, Q.T. Le, and Y. Gao, Appl. Phys. Lett. 74, 880 (1999).

    Article  Google Scholar 

  22. A.C. Schmitz, A.T. Ping, M.A. Khan, Q. Chen, J.W. Yang, and I. Adesida, J. Electron. Mater. 27, 255 (1998).

    CAS  Google Scholar 

  23. J.R. Waldrop and R.W. Grant, Appl. Phys. Lett. 52, 1794 (1988).

    Article  CAS  Google Scholar 

  24. J.R. Waldrop and R.W. Grant, Appl. Phys. Lett. 62, 2685 (1993).

    Article  CAS  Google Scholar 

  25. K.M. Tracy, P.J. Hartlieb, S. Einfeldt, F. Davis, E.H. Hurt, and R.J. Nemanich, J. Appl. Phys. 94, 3939 (2003).

    Article  CAS  Google Scholar 

  26. T. Hashizume, S. Ootomo, S. Oyama, M. Konishi, and H. Hasegawa, J. Vac. Sci. Technol. B 19, 1675 (2001).

    Article  CAS  Google Scholar 

  27. V.M. Bermudez, J. Appl. Phys. 80, 1190 (1996).

    Article  CAS  Google Scholar 

  28. J.R. Waldrop and R.W. Grant, Appl. Phys. Lett. 68, 2879 (1996).

    Article  CAS  Google Scholar 

  29. C.I. Wu and A. Kahn, J. Appl. Phys. 86, 3209 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YJ., Hsu, CW. Study of schottky barrier heights of indium-tin-oxide on p-GaN using x-ray photoelectron spectroscopy and current-voltage measurements. J. Electron. Mater. 33, 1036–1040 (2004). https://doi.org/10.1007/s11664-004-0032-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0032-y

Key words

Navigation