Skip to main content
Log in

Predicting tensile properties of the bulk 96.5Sn-3.5Ag lead-free solder

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Equations are presented for predicting tensile properties as functions of temperature and strain rate for the bulk-eutectic 96.5Sn-3.5Ag lead-free solder. At 25°C, we obtained 49.0 GPa for Young’s modulus based on acoustic measurements, which is higher than most of those measured by tensile tests that are subject to viscoelastic creep; 23.1 MPa and 26.3 MPa for yield stress and ultimate tensile strength (UTS) of specimens that are cast, annealed, and aged at a strain rate of 2.0×10−4 s−1; 48.7% for total elongation, which is larger than most of the reported values. The presence of “initial defects” in the specimens, such as porosity and void, might cause the reduction in measured total elongations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Dieter, Mechanical Metallurgy, 2nd ed. (New York: McGraw-Hill, 1976), p. 335.

    Google Scholar 

  2. M.H. Biglari, M. Oddy, M.A. Oud, and P. Davis, Joint Int. Congr. Exhib. Electronics Goes Green 2000+ (Berlin: VDE-Verlag, 2000), pp. 73–82.

    Google Scholar 

  3. R. Darveaux, K. Banerji, A. Mawer, and G. Doby, Ball Grid Array Technology, ed. J.H. Lau (New York: McGraw-Hill, 1995), pp. 379–442.

    Google Scholar 

  4. H. Ledbetter and S. Kim, National Institute of Standards and Technology, unpublished research.

  5. J.H. Lau and Y.H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies (New York: McGraw-Hill, 1997), p. 115.

    Google Scholar 

  6. R.J. McCabe and M.E. Fine, Scripta Mater. 39, 189 (1998).

    Article  CAS  Google Scholar 

  7. National Center for Manufacturing Sciences (NCMS), “Room Temperature Tensile Properties for Lead Free Solders,” Technical Reports for the Lead Free Solder Project: Properties Reports, Lead Free Solder Project CD-ROM (Ann Arbor, MI: National Center for Manufacturing Sciences, 1999).

    Google Scholar 

  8. P. Vianco, D. Frear, F. Yost, and J. Roberts, Development of Alternatives to Pb-Based Solders, Sandia Report SAND97-0315 (Albuquerque, NM: Sandia National Laboratories, 1997).

    Google Scholar 

  9. P.T. Vianco, J.A. Rejent, A.F. Fossum, and M.K. Neilsen, Proc. 4th Pacific Rim Int. Conf. on Advanced Materials and Processing, ed. S. Hanada et al. (Sendai: The Japan Institute of Metals, 2001), pp. 2925–2928.

    Google Scholar 

  10. M. Harada and R. Satoh, Proc. 40th Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 1990), pp. 510–517.

    Book  Google Scholar 

  11. J.W. Kilinski, J.R. Lesniak, and B.I. Sandor, Solder Joint Reliability: Theory and Applications, ed. J.H. Lau (New York: van Nostrand Reinhold, 1991), pp. 384–405.

    Google Scholar 

  12. D.G. House and E.V. Vernon, Br. J. Appl. Phys. 11, 254 (1960).

    Article  CAS  Google Scholar 

  13. J.R. Neighbours and G.A. Alers, Phys. Rev. 111, 707 (1958).

    Article  CAS  Google Scholar 

  14. Y.A. Chang and L. Himmel, J. Appl. Phys. 37, 3567 (1966).

    Article  CAS  Google Scholar 

  15. R. Satoh, Thermal Stress and Strain in Microelectronics Packaging, ed. J.H. Lau (New York: van Nostrand Reinhold, 1993), pp. 500–531.

    Google Scholar 

  16. W.J. Tomlinson and A. Fullylove, J. Mater. Sci. 27, 5777 (1992).

    Article  CAS  Google Scholar 

  17. J.C. Madeni, S. Liu, and T.A. Siewert, Int. Conf. on Joining of Advanced and Specialty Materials (Materials Park, OH: ASM International, 2001), pp. 33–38.

    Google Scholar 

  18. H. Mavoori and J. Chin, Proc. 45th Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 1995), pp. 990–998.

    Book  Google Scholar 

  19. J.S. Hwang and R.M. Vargas, Solder. Surf. Mount. Technol. 5, 38 (1990).

    Article  CAS  Google Scholar 

  20. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine, J. Electron. Mater. 26, 783 (1997).

    CAS  Google Scholar 

  21. C.J. Thwaites and W.B. Hampshire, Weld. J. Res. Suppl. 55, 323s (1976).

    Google Scholar 

  22. L. Xiao, J. Liu, Z. Lai, L. Ye, and A. Tholen, Proc. Symp. on Advanced Packaging Materials (New York: IEEE, 2000), pp. 145–151.

    Google Scholar 

  23. D.A. Woodford, Trans. ASM 62, 291 (1969).

    CAS  Google Scholar 

  24. F.A. Nichols, Acta Metall. 28, 663 (1980).

    Article  CAS  Google Scholar 

  25. J.H. Keeler, Trans. ASM 47, 157 (1955).

    Google Scholar 

  26. Y.W. Cheng, R.L. Tobler, B.J. Filla, and K.J. Coakley, Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions, NIST Technical Note 1500-6 (Boulder, CO: National Institute of Standards and Technology, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution of NIST, an agency of the U.S. government, not subject to copyright in the United States.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, YW., Siewert, T.A. Predicting tensile properties of the bulk 96.5Sn-3.5Ag lead-free solder. J. Electron. Mater. 32, 535–540 (2003). https://doi.org/10.1007/s11664-003-0139-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0139-6

Key words

Navigation