Skip to main content
Log in

Analysis of copper grains in damascene trenches after rapid thermal processing or furnace anneals

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructures of Cu lines in damascene trenches annealed at temperatures from room temperature to 425°C using both rapid thermal processing (RTP) and furnace annealing were investigated using an array of characterization techniques including transmission electron microscopy (TEM), focused ion beam, scanning electron microscopy (SEM), and electron backscatter diffraction-orientation-imaging microscopy (EBSD-OIM). It was found that the final grain sizes strongly depend on the annealing process used; RTP generated larger grains than furnace annealing. The Cu line electrical resistance correlated with grain size differences observed for RTP and furnace anneals. The ramping rate, not the annealing time, played the critical role in the grain growth process. In either case, a high density of Σ3 coincident site lattice (CSL) twin boundaries was observed in the Cu lines. Forty-five percent of the grain boundaries measured were found to be Σ3 CSL twins, which are differentiated from random high-angle boundaries by having preferred electrical and diffusion properties. The minimum feature dimension of width or height of the damascene trenches limited the average grain size. Prior to the trench height limitation, the average grain size increased linearly with the trench width. The Cu (111) texture became stronger as the trench width increased up to 0.5 µm; for wider trenches, the texture did not increase further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Edelstein, Advanced Metallization Conf. Proc. (1998), pp. 669–675.

  2. C.K. Hu, R. Rosenberg, H.S. Rathore, D.B. Nguyen, and B. Agarwala, Int. Interconnect Technology Conf. Proc. (1999), pp. 267–269.

  3. X. Chu, J.A. Prybyla, S.K. Theiss, and M.A. Marcus, Appl. Phys. Lett. 75, pp. 3790–3792 (1999).

    Article  CAS  Google Scholar 

  4. C.S. Hau-Riege and C.V. Thompson, Appl. Phys. Lett. 78, 3451 (2001).

    Article  CAS  Google Scholar 

  5. A. Sekiguchi, J. Koike, S. Kamlya, M. Saka, and K. Maruyama, Appl. Phys. Lett. 79, 9 (2001).

    Article  Google Scholar 

  6. Q.T. Jiang, A. Frank, R.H. Havemann, V. Parihar, and M. Nowell, Proc. 2001 Symp. on VLSI Technology (Piscataway, NJ: IEEE 2001), pp. 139–140.

    Google Scholar 

  7. T. Ritzdorf et al., Proc. Int. Interconnect Technology Conf. (New York: IEEE, 1998), pp. 106–108.

    Google Scholar 

  8. Q.T. Jiang and M. Thomas, J. Vac. Sci. Technol. B 19, 762 (2001).

    Article  CAS  Google Scholar 

  9. T. Oshima, T. Tamaru, K. Ohmori, H. Aoki, H. Ashihara, T. Saito, H. Yamaguchi, M. Miyauchi, K. Torii, J. Murata, A. Satoh, H. Miyazaki, and K. Hinode, Proc. IEDM (2000), pp. 123–126.

  10. T.M. Shaw, L. Gignac, I.C. Noyan, X.H. Lui, R.R. Rosenberg, E. Levine, S.E. Greco, P. Mclaughlin, P.C. Wang, and G.A. Biery (Paper presented at 2001 MRS Spring Meeting, San Francisco, CA, April 2001).

  11. B.L. Adams et al., Metall. Trans. A 24A, 819 (1993).

    CAS  Google Scholar 

  12. M.L. Kronberg and F.H. Wilson, Trans. TMS-AIME 185, 501 (1949).

    Google Scholar 

  13. H. Mykura, Grain Boundary Struct. Kin., p. 445 (1980).

  14. C. Lingk and M.E. Gross, J. Appl. Phys. 84, 5547 (1998).

    Article  CAS  Google Scholar 

  15. L.E. Murr, Interfacial Phenomena in Metals and Alloys, p. 131 (1975).

  16. D.P. Field, D. Dornisch, and H.H. Tong, Scripta Mater., to be published.

  17. P. Besser, A. Marathe, L. Zhao, M. Herrick, C. Capasso, and H. Kawasaki, IEDM 2000 Conf. Proc. (2000), pp. 119–122.

  18. S.P. Hau-Riege and C.V. Thompson, Appl. Phys. Lett. 76, 309 (2000).

    Article  CAS  Google Scholar 

  19. A.E. Lita and J. Sanchez, Jr., J. Appl. Phys. 85, 876 (1999).

    Article  CAS  Google Scholar 

  20. T. Nogami et al., Advanced Metallization Conf. (1998), pp. 313–319.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, QT., Nowell, M., Foran, B. et al. Analysis of copper grains in damascene trenches after rapid thermal processing or furnace anneals. J. Electron. Mater. 31, 10–15 (2002). https://doi.org/10.1007/s11664-002-0166-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0166-8

Key words

Navigation