Skip to main content
Log in

Use of thermodynamic data to calculate surface tension and viscosity of Sn-based soldering alloy systems

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A thermodynamic database for the Pb-free soldering alloy systems, which include Sn, Ag, Cu, Bi, and In, has been made using the CALPHAD method. The resulting thermodynamic properties of the Sn-based binary alloy systems were used to determine the surface tensions and viscosities. The surface tensions were calculated using Butler’s monolayer model and the viscosities by Hirai’s and Seetharaman’s models. Butler’s model was also used to determine the surface active element. The results for binary systems were extended to the Sn-based ternary systems (Sn-Ag-Cu, Sn-Ag-Bi). The surface tensions of commercial eutectic Sn-Pb and Sn-Pb-Ag solder alloys were measured by the sessile drop method. The measured values and other researchers’ results were compared with the calculated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Kang et al., Proc. 49th ECTC 283 (1999).

  2. G. Ghosh, J. Electron. Mater. 29, 1182 (2000).

    Article  CAS  Google Scholar 

  3. J.A.V. Butler, Proc. Roy. Soc. A135, 348 (1932).

    Article  Google Scholar 

  4. L. Kaufman and H. Bernstein. computer Calculation of Phase Diagrams (New York: Academic Press, 1970).

    Google Scholar 

  5. F. Bashforth and J.C. Adams, Attempt to Test the Theories of Capillary Action (Cambridge, U.K.: Cambridge University Press, 1883).

    Google Scholar 

  6. E.A. Brandes, Smithells Metals Reference Book, 6th Ed. (London: Butterworths, 1983).

    Google Scholar 

  7. R. Speiser, D.R. Poirier, and K.S. Yeum, Scripta Metall. 21, 687 (1987).

    Article  CAS  Google Scholar 

  8. T.P. Hoar and D.A. Melford, Trans. Faraday Soc. 53, 315 (1957).

    Article  CAS  Google Scholar 

  9. T. Tanaka, K. Hack, and S. Hara, MRS Bulletin 45 (1999).

  10. O. Redlich and A.T. Kister, Ind. Eng. Chem. 40, 345 (1948).

    Article  Google Scholar 

  11. Y.-M. Muggianu, M. Gambino, and J.-P. Bros, J. Chim. Phys. 72, 83 (1975).

    CAS  Google Scholar 

  12. M. Hirai, ISIJ Int. 33, 251 (1993).

    CAS  Google Scholar 

  13. S. Seetharaman and Du Sichen, Metall. Mat. Trans. 25B, 589 (1994).

    Google Scholar 

  14. B. Zimmermann (Ph.D. Thesis, Univ. Stuttgart, 1976).

  15. F.H. Hayes, H.L. Lukas, G. Effenberg, and G.Z. Petzow, Z. Metallkd. 77, 749 (1986).

    CAS  Google Scholar 

  16. U.R. Kattner and W.J. Boettinger, J. Electron. Mater. 23, 603 (1994).

    CAS  Google Scholar 

  17. B.-J. Lee, C.-S. Oh, and J.-H. Shim, J. Electron. Mater. 25, 983 (1996).

    CAS  Google Scholar 

  18. J.-H. Shim, C.-S. Oh, and B.-J. Lee, and D.N. Lee, Z. Metallkd. 87, 205 (1996).

    CAS  Google Scholar 

  19. I. Karakaya and W.T. Thompson, Bulletin of Alloy Phase Diagrams 9, 144 (1998).

    Google Scholar 

  20. D.W.G. White, Metall. Trans. 2, 3067 (1971).

    CAS  Google Scholar 

  21. I. Lauermann, G. Metzger, and F. Sauerwald, Z. Phys. Chem. 216, 42 (1961).

    CAS  Google Scholar 

  22. J.W. Tayor, Acta Metall. Mater. 4, 460 (1956).

    Article  Google Scholar 

  23. V.F. Kovalchuk and V.A. Kuznetsov, Z. Fiz. Khim. 42, 1754 (1968).

    CAS  Google Scholar 

  24. E. Gebhardt, M. Becher, and E. Tragner, Z. Metallkd. 44, 379 (1953).

    CAS  Google Scholar 

  25. N.E. Bodakin, B.A. Baum, and G.V. Tyagunov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 7, 9 (1978).

    Google Scholar 

  26. H. Walsdorfer, I. Alpshofen, and B. Predel, Z. Metallkd. 79, 503 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Lee, D.N. Use of thermodynamic data to calculate surface tension and viscosity of Sn-based soldering alloy systems. J. Electron. Mater. 30, 1112–1119 (2001). https://doi.org/10.1007/s11664-001-0137-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0137-5

Key words

Navigation