Skip to main content
Log in

Development of Al-free ohmic contact to n-GaN

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the electrical properties and interfacial reactions of the Si/Ti-based ohmic contacts to Si-doped n-GaN grown by metal organic chemical vapor deposition and the electrical properties were related to the material reactions. Si/Ti contact system was selected because Ti silicides have a low work function comparable to Al and also Si was used widely as an n-type dopant. As the annealing temperature increased, the specific contact resistance of Si/Ti-based ohmic contacts decreased and showed minimum contact decreased and showed minimum contact resistance as low as 3.86 10−6 cm2 after annealing at 900°C for 3 min under N2 ambient. Our experimental results show that the ohmic behavior of Si/Ti-based contact, were attributed to the low barrier height of Ti-silicide/GaN interface, which was formed through the interfacial reaction between Si and Ti layers. In order to clarify the current conduction mechanism of Si/Ti-based contact, temperature dependent contact resistance measurement was carried out for Au(1000 Å)/Ti(400 Å)/Si(1500 Å)/Ti(150 Å) contact system after annealing at 700°C for 3 min. The contact resistance of Si/Ti-based ohmic contact decreased exponentially with the measuring temperature and so it can be concluded that current flows over the low barrier height by thermionic emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  CAS  Google Scholar 

  2. S. Nakamura, J. Vac. Sci. Technol. A13, 705 (1995).

    Article  CAS  Google Scholar 

  3. K. Suzue, S.N. Mohammad, Z.F. Fan, W. Kim, O. Aktas, A.E. Botchakarev, and H. Morkoc, J. Appl. Phys. 80, 4467 (1996).

    Article  CAS  Google Scholar 

  4. J.S. Foresi and T.D. Moustakas, Appl. Phys. Lett. 62, 2859 (1993).

    Article  CAS  Google Scholar 

  5. S.C. Binary, K. Doverspike, G. Kelner, H.B. Dietrich, and A.E. Wickenden, Solid-State Electron. 41, 177 (1997).

    Article  Google Scholar 

  6. M.A. Khan, J.N. Kuznia, J.M. Van Hove, N. Pan, and J. Carter, Appl. Phys. Lett. 60, 3027 (1992).

    Article  CAS  Google Scholar 

  7. Y.-F. Wu, W.-N. Jiang, B.P. Keller, D. Kapolnek, S.P. Denbaars, U.K. Mishra, and B. Wilson, Solid-State Electron. 41, 165 (1997).

    Article  CAS  Google Scholar 

  8. M.E. Lin, Z. Ma, F.Y. Huang, Z.F. Fan, L.H. Allen, and H. Morkoc, J. Appl. Phys. 64, 1003 (1994).

    CAS  Google Scholar 

  9. B.P. Luther, S.E. Mohney, J.M. Delucca, and R.F. Karlicek, J. Electron. Mater. 27, 196 (1998).

    CAS  Google Scholar 

  10. B.P. Luther, S.E. Mohney, T.N. Jackson, M.A. Khan, Q. Chen, and J.W. Yang, Appl. Phys. Lett. 70, 57 (1997).

    Article  CAS  Google Scholar 

  11. Z. Fan, S.N. Mohammad, W. Kim, O. Aktas, A.E. Botchkarev, K. Suzue, H. Morkoc, K. Duxstad, and E.E. Haller, J. Electron. Mater. 25, 1703 (1996).

    Article  CAS  Google Scholar 

  12. A.T. Ping, M. AsifKahn, and I. Adesida, J. Electron. Mater. 25, 819 (1996).

    CAS  Google Scholar 

  13. B.P. Luther, S.E. Mohney, J.M. DeLucca, and R.F. Karlicekc (unpublished).

  14. C.T. Lee, M.Y. Yeh, and Y.T. Lyu, J. Electron. Mater. 26, 262 (1997).

    Article  CAS  Google Scholar 

  15. L.L. Smith, R.F. Davis, M.J. Kim, R.W. Carpenter, and Y. Huang, J. Mater. Res. 11, 2257 (1996).

    Article  CAS  Google Scholar 

  16. L.F. Lester, J.M. Brown, J.C. Ramer, L. Zhang, S.D. Hersee, and J.C. Zolper, Appl. Phys. Phys. Lett. 69, 27 (1996).

    Google Scholar 

  17. M.-A. Nicolet and S.S. Lau, Formation and Characterization of Transition Metal Silioides in VLSI Electronics: Microstructure Science, Vol. 6 (New York: Academic Press, 1983).

    Google Scholar 

  18. S.M. Sze: Semiconductor Devices: Physics and Technology (New York: John Wiley and Sons, 1985).

    Google Scholar 

  19. S.P. Kowalczyk, J.R. Waldrop, and R.W. Grant, J. Vac. Sci. Technol. 19, 611 (1816).

    Article  Google Scholar 

  20. B.P. Luther, S.E. Mohney, T.N. Jackson, M. Asif Khan, Q. Chen, and J.W. Yang, Appl. Phys. Lett. 70, 57 (1997).

    Article  CAS  Google Scholar 

  21. C.Y. Kim, S.-W. Kim, C.-H. Hong, D.-W. Kim, H.K. Baik, and C.N. Whang, J. Cryst. Growth 189/190, 720 (1998).

    Article  Google Scholar 

  22. Z. Fan, S.N. Mohammad, W. Kim, O. Aktas, A.E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 68, 1672 (1996).

    Article  CAS  Google Scholar 

  23. S. Ruvimov, Z.L. Weber, J. Washburn, K.J. Duxstad, E.E. Haller, Z.-F. Fan, S.N. Mohammad, W. Kim, A.E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 1556 (1996).

    Article  CAS  Google Scholar 

  24. S. Miller and P.H. Holloway, J. Electron. Mater. 25, 1709 (1996).

    Article  CAS  Google Scholar 

  25. J. Ding, K.M. Yu, R. Gronsky, and J. Washburn, MRS Proc. 148, 41 (1991).

    Google Scholar 

  26. A.Y.C. Yu, Solid State Electron. 13, 239 (1970).

    Article  Google Scholar 

  27. F. Ren, C.B. Vartuli, S.J. Pearton, C.R. Abernathy, S.M. Donovan, J.D. Mackenzie, R.J. Shul, J.C. Zolper, M.L. Lovejoy, A.G. Barca, M. Hagerott-Crawford, and K.A. Jones, J. Vac. Sci. Technol. A 15, 802 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DW., Bae, J.C., Kim, W.J. et al. Development of Al-free ohmic contact to n-GaN. J. Electron. Mater. 30, 855–860 (2001). https://doi.org/10.1007/s11664-001-0071-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0071-6

Key words

Navigation