Skip to main content
Log in

Characteristics of gradually doped LWIR diodes by hydrogenation

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The hydrogenation effects on HgCdTe diode performance are presented and the mechanism of hydrogenation is revealed. By the hydrogenation, R0A is increased by 30 times and photo-response is also improved. It is supposed that these are explained by the increased minority carrier lifetime by the hydrogenation. However, it is found from LBIC measurements that the minority carrier lifetime doesn’t increase by the hydrogenation. An important clue that explains the hydrogenation effects is found from Hall measurements. It is found that, after the hydrogenation, the doping concentration of Hg-vacancy doped substrate decreases and the mobility increases. For the heavily hydrogenated bulk substrate, it is also found that the hydrogen passivates the whole Hg-vacancy and reveals the residual impurity and p-type doping concentration is exponentially graded. From these measurements, the diffusion current model of gradually doped diode is proposed. This model shows that the diffusion current of the graded junction diode is 2 orders of magnitude smaller than that of the abrupt junction diode, which clearly explains the R0A increase by the hydrogenation. Medicisimulation to investigate the change of LBIC signal by the doping grading also coincides with the measurements. From these measurements and model, the hydrogenation effects are attributed to the grading of Hg-vacancy doped p-type substrate by the diffused hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Destefanis and J.P. Chamonal, J. Electron. Mater. 22, 1027 (1993).

    CAS  Google Scholar 

  2. A. Ajisawa and N. Oda, J. Electron. Mater. 24, 1105 (1995).

    Article  CAS  Google Scholar 

  3. A. Rogalski and W. Larkowski, Electron. Technol. 18, 55 (1985).

    CAS  Google Scholar 

  4. J. Bajaj, S.H. Shin, J.G. Pasko, and Khoshnevisan, J. Vac. Sci. Technol. A1, 1749 (1983).

    Google Scholar 

  5. D.E. Lacklison and P. Capper, Semicond. Sci. Technol. 2, 33 (1987).

    Article  CAS  Google Scholar 

  6. R. Fastow and Y. Nemirovsky, J. Vac. Sci. Technol. A8, 1245 (1990).

    Google Scholar 

  7. M.C. Chen and L. Colombo, J. Appl. Phys. 72, 4761 (1992).

    Article  CAS  Google Scholar 

  8. P. Mitra, T.R. Schimert, F.C. Cease, and S.L. Barnes, J. Electron. Mater. 24, 1077 (1995).

    Article  CAS  Google Scholar 

  9. S.D. Yoo and K.D. Kwack, J. Appl. Phys. 83, 2586 (1988).

    Article  Google Scholar 

  10. C.E. Jones, V. Nair, and D.L. Polla, Appl. Phys. Lett. 39, 248 (1981).

    Article  CAS  Google Scholar 

  11. D.L. Polla and C.E. Jones, J. Appl. Phys. 52, 5118 (1981).

    Article  CAS  Google Scholar 

  12. D.L. Polla, S.P. Tobin, M.B. Reine, and A.K. Sood, J. Appl. Phys. 52, 5182 (1981).

    Article  CAS  Google Scholar 

  13. Y.H. Kim, S.H. Bae, C.K. Kim, and H.C. Lee, Proc. SPIE, 3436-14.

  14. J. Bajaj and W.E. Tennant, J. Cryst. Growth 103, 170 (1990).

    Article  CAS  Google Scholar 

  15. J. Bajaj, W.E. Tennant, R. Zucca, and S.J.C. Irvine, Semicond. Sci. Technol. 8, 872 (1993).

    Article  CAS  Google Scholar 

  16. C.A. Musca, J.F. Siliquini, E.P.G. Smith, J.M. Dell, and L. Faraone, J. Electron. Mater. 27, 661 (1998).

    Article  CAS  Google Scholar 

  17. L.O. Bubulac, J. Cryst. Growth 86, 723 (1988).

    Article  CAS  Google Scholar 

  18. D. Redfield, Appl. Phys. Lett. 35, 182 (1979).

    Article  CAS  Google Scholar 

  19. J.H. Pimbley, IEEE Trans. Electron Devices 35, 1957 (1988).

    Article  Google Scholar 

  20. S.E. Schacham and E. Finkman. J. Appl. Phys. 71, 5033 (1992).

    Article  CAS  Google Scholar 

  21. Y. Nemirovsky and D. Rosenfeld, J. Appl. Phys. 63, 2435 (1988).

    Article  CAS  Google Scholar 

  22. R. Fastow and Y. Nemirovsky, J. Appl. Phys. 66, 1705 (1989).

    Article  CAS  Google Scholar 

  23. G.M. Murphy, Ordinary Differential Equations and Their Solutions (Princeton, NJ: van Nostrand Reinhold, 1960).

    Google Scholar 

  24. S.E. Schacham, J. Appl. Phys. 68, 865 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YH., Kim, TS., Redfern, D.A. et al. Characteristics of gradually doped LWIR diodes by hydrogenation. J. Electron. Mater. 29, 859–864 (2000). https://doi.org/10.1007/s11664-000-0238-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0238-6

Key words

Navigation