Skip to main content
Log in

Influence of microstructure on fatigue crack growth behavior of Sn-Ag solder interfaces

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The relationship between microstructure and fatigue crack growth behavior was examined at Sn-Ag solder interfaces on copper and electroless-nickel metallizations. On copper metallization, the solder interface was lined with a coarse Ag3Sn intermetallic phase in addition to the Cu6Sn5 intermetallic and the adjacent solder alloy contained nodular Ag3Sn phase. This interfacial microstructure was shown to result in inferior fatigue resistance, with the fatigue crack path following the interfacial Ag3Sn intermetallic phase. In contrast, the solder interface on the electroless-nickel metallization was covered with a thin layer of Ni3Sn4 intermetallic phase, and the solder microstructure was composed of fine needles of Ag3Sn phase dispersed in the Sn-rich matrix. This solder interface was found to be significantly more resistant to fatigue than the copper/Sn-Ag solder interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Glazer, Int. Mater. Rev. 40, 65 (1995).

    CAS  Google Scholar 

  2. B.R. Allenby et al., Proc. Surface Mount Int. Conf. (1992), p. 1.

  3. P.G. Harris and M.A. Whitmore, Circuit World 19, 25 (1993).

    Google Scholar 

  4. J. Glazer, J. Electron. Mater. 23, 693 (1994).

    CAS  Google Scholar 

  5. W.J. Tomlinson and A. Fullylove, J. Mater. Sci. 27, 5777 (1992).

    Article  CAS  Google Scholar 

  6. S.K. Kang and A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994).

    CAS  Google Scholar 

  7. H.D. Solomon, Trans. ASME J. Electron Packaging 113, 102 (1991).

    Google Scholar 

  8. J.S. Hwang and R.M. Vargas, Soldering & Surface Mount Technol. 5, 38 (1990).

    Article  CAS  Google Scholar 

  9. C. Melton, JOM 45 (7), 33 (1993).

    CAS  Google Scholar 

  10. D. Yao and J.K. Shang, IEEE Transaction: CPMT 19, 154 (1996).

    CAS  Google Scholar 

  11. J.K. Shang and D. Yao, Trans. ASME J. Electronic Packaging 118, 170 (1996).

    Google Scholar 

  12. G.O. Mallory and J.B. Hajdu, Electroless Plating, Fundamentals and Applications (1990).

  13. W. Riedel, Electroless Nickel Plating, (1991).

  14. J.K. Dennis and T.E. Such, Nickel and Chromium Plating, (Cambridge, U.K.: University Press, 1986).

    Google Scholar 

  15. R.N. Duncan, Proc. EN ’93 Conf. (1993), p. 27–2.

  16. Z. Zhang and J.K. Shang, Metall. Mater. Trans. A 27A, 205 (1996).

    CAS  Google Scholar 

  17. D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, J. Electron. Mate. 26, 883 (1997).

    CAS  Google Scholar 

  18. W. Yang, L. E. Felton, and R.W. Messler, Jr., J. Electron. Mater. 24, 1465 (1995).

    CAS  Google Scholar 

  19. D.R. Frear, F.M. Hosking, and P.T. Vianco, Proc. Materials Developments in Microelectronic Packaging Conf. (1991), p. 229.

  20. D. Yao and J.K. Shang, Metall. Mater. Trans. 26A, 2677 (1995).

    CAS  Google Scholar 

  21. R. Darveaux and K. Banerji, IEEE Trans. Comp. Hybrids. Manuf. Technol. 12, 284 (1989).

    Article  Google Scholar 

  22. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 595 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.L., Shang, J.K. Influence of microstructure on fatigue crack growth behavior of Sn-Ag solder interfaces. J. Electron. Mater. 29, 622–627 (2000). https://doi.org/10.1007/s11664-000-0056-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0056-x

Key words

Navigation