Skip to main content
Log in

A pilot-scale trial of an improved galvanic deoxidation process for refining molten copper

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A laboratory-scale galvanic deoxidation technology developed by earlier workers has been improved, with the aim of developing a prototype pilot-scale deoxidation unit. Each deoxidation cell consists of a one end-closed yttria-stabilized zirconia (YSZ) tube coated with a Ni-YSZ cermet anode on the inner walls. The YSZ tube is immersed, with its closed end in the metallic melt, and an oxygen-chemical-potential gradient across the tube is established by passing a reducing gas through the tube. The melt is then deoxidized by short circuiting it with the anode. Through laboratory experimentation, the nature of the anode/electrolyte interface adhesion was identified to be an important factor in obtaining enhanced deoxidation kinetics. The kinetics of oxygen removal from the melt was increased by an order of magnitude with an improved anode/electrolyte interface. A pilot-scale refining unit consisting of 53 cells with the improved anode/electrolyte interface was manufactured, and a field evaluation of the galvanic deoxidation of copper was conducted. The deoxidation-process model was modified to include multiple deoxidation cells, which were required for the pilot-scale trials, and to analyze the effect of electrolyte/electrode adhesion on deoxidation kinetics. Preliminary studies on process component lifetimes were conducted by investigating the thermal cycling, corrosion behavior of the electrolyte, and stability of the cermet anode structure. Based on the results of the field trial and the analyses of the process component lifetime, future work needed toward commercializing the technology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Hasham, U.B. Pal, and K.C. Chou: J. Elec. Soc., 1995, vol. 142, pp. 469–75.

    Article  CAS  Google Scholar 

  2. K. Kiukkola and C. Wagner: J. Elec. Soc., 1957, vol. 104, pp. 379–86.

    Article  Google Scholar 

  3. M. Iwase, M. Tanida, A. McLean, and T. Mori: Metall. Trans. A, 1981, vol. 12A, pp. 517–24.

    Google Scholar 

  4. W.A. Fischer and D. Janke: Scripta Metall., 1972, vol. 6, pp. 923–28.

    Article  CAS  Google Scholar 

  5. K.E. Oberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp: Metall. Trans., 1973, vol. 4, pp. 75–82.

    CAS  Google Scholar 

  6. R.R. Odle and R.A. Rapp: Electrical Soc. Symp. Proc. on Metal-Slag-Gas Reactions and Processes, Z.A. Foroulis and W.W. Smeltzer, eds., The Electrochemical Society, Inc., Princeton, NJ, 1975, pp. 851–74.

    Google Scholar 

  7. R.R. Odle and R.A. Rapp: Metall. Trans. B, 1977, vol. 8B, pp. 581–89.

    CAS  Google Scholar 

  8. S. Yuan, U.B. Pal, and K.C. Chou: J. Am. Ceram. Soc., 1976, vol. 79, pp. 641–50.

    Article  Google Scholar 

  9. S. Yuan: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.

    Google Scholar 

  10. D.R. Gaskell: Introduction to Metallurgical Thermodynamics, 2nd ed., Hemisphere Publishing Corporation, New York, NY, 1981.

    Google Scholar 

  11. N.Q. Minh: J. Am. Ceram. Soc., 1993, vol. 76, pp. 563–88.

    Article  CAS  Google Scholar 

  12. D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994.

    Google Scholar 

  13. K.E. Oberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp: Metall. Trans., 1973, vol. 4, pp. 61–67.

    CAS  Google Scholar 

  14. O. Kubaschewski, C.B. Alcock, and P.J. Spencer: Materials Thermochemistry, 6th ed., Pergamon Press, New York, NY, 1993.

    Google Scholar 

  15. M. Kleitz, E. Fernandez, J. Fouletier, and P. Fabry: Advances in Ceramics—Science and Technology of Zirconia 3, A.H. Heuer and L.W. Hobbs, eds., The American Ceramic Society, Inc., Columbus, OH, 1981, pp. 349–63.

    Google Scholar 

  16. H. Schmalzried: Z. Phys. Chemie Neue Folge, 1963, vol. 38, pp. 87–102.

    CAS  Google Scholar 

  17. D.A.J. Swinkels: J. Elec. Soc., 1970, vol. 117, pp. 1267–68.

    Article  CAS  Google Scholar 

  18. D.J. Green, R.H.J. Hannink, and M.V. Swain: Transformation Toughening of Ceramics, CRC Press Inc., Boca Raton, FL, 1989, pp. 1–15.

    Google Scholar 

  19. K. Kinoshita, F.R. McLarnon, and E.J. Cairns: Fuel Cells: A Handbook, Lawrence Berkeley Laboratory, Berkeley, CA, 1988.

    Google Scholar 

  20. M. Iwase, E. Ichise, M. Takeuchi, and T. Yamasaki: Trans. Jpn. Inst. Met., 1984, vol. 25, pp. 43–52.

    CAS  Google Scholar 

  21. S.C. Britten: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

    Google Scholar 

  22. M. Iwase and T. Mori: Trans. Iron Steel Inst. Jpn., 1979, vol. 19, pp. 126–32.

    CAS  Google Scholar 

  23. K.C. Chou, S. Yuan, and U.B. Pal: Proc. 3rd Int. Symp. on Solid Oxide Fuel Cells, S.C. Singhal and H. Iwahara, eds., The Electrochemical Society, Inc., Princeton, NJ, 1993, pp. 431–43.

    Google Scholar 

  24. T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya: J. Elec. Soc., 1990, vol. 137, pp. 3042–47.

    Article  CAS  Google Scholar 

  25. S. Murakami, Y. Akiyama, N. Ishida, T. Yasuo, T. Saito, and N. Furukawa: Proc. 2nd Int. Symp. on Solid Oxide Fuel Cells, F. Grosz, P. Zegers, S.C. Singhal, and O. Yamamoto, eds., The Electrochemical Society, Inc., Princeton, NJ, 1991, pp. 561–68.

    Google Scholar 

  26. D.W. Dees, T.D. Claar, T.E. Easler, D.C. Fee, and F.C. Mrazek: J. Elec. Soc., 1987, vol. 134, pp. 2141–46.

    Article  CAS  Google Scholar 

  27. T. Setoguchi, K. Okamoto, K. Eguchi, and H. Arai: J. Elec. Soc., 1992, vol. 139, pp. 2875–80.

    Article  CAS  Google Scholar 

  28. T. Iwata: J. Elec. Soc., 1996, vol. 43, pp. 1521–25.

    Article  Google Scholar 

  29. S. Lowell and J.E. Shields: Powder Surface Area and Porosity, 2nd ed., Chapman and Hall Ltd., New York, NY, 1984.

    Google Scholar 

  30. N.Q. Minh and T. Takahashi: Science and Technology of Ceramic Fuel Cells, Elsevier Science B.V., Amsterdam, 1995.

    Google Scholar 

  31. N.J. Mashalick: Proc. 1st Int. Symp. on Solid Oxide Fuel Cells, S.C. Singhal, ed., The Electrochemical Society, Inc., Princeton, NJ, 1989, pp. 279–87.

    Google Scholar 

  32. A. Gubner, H. Landes, J. Metzger, H. Seeg, and R. Stubner: Proc. 5th Int. Symp. on Solid Oxide Fuel Cells, U. Stimming, S.C. Singhal, H. Tagawa, and W. Lehnert, eds., The Electrochemical Society, Inc., Princeton, NJ, 1997, pp. 844–50.

    Google Scholar 

  33. S.P. Jiang: Science and Technology of Zirconia V, S.P.S. Badwal, M.J. Bannister, and R.H.J. Hannink, eds., The American Ceramic Society, Inc., Columbus, OH, 1993, pp. 819–28.

    Google Scholar 

  34. J. Mizusaki, H. Tagawa, T. Saito, T. Yamamura, K. Kamitani, K. Hirano, S. Ethara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto: J. Elec. Soc., 1994, vol. 141, pp. 2129–34.

    Article  CAS  Google Scholar 

  35. J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ethara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto: Solid State Ion., 1994, vols. 70–71, pp. 52–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soral, P., Pal, U., Larson, H.R. et al. A pilot-scale trial of an improved galvanic deoxidation process for refining molten copper. Metall Mater Trans B 30, 307–321 (1999). https://doi.org/10.1007/s11663-999-0060-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0060-3

Keywords

Navigation