Skip to main content
Log in

Bioleaching model of a copper-sulfide ore bed in heap and dump configurations

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A two-dimensional (2-D) model for a heap or dump bioleaching of a copper ore containing mainly chalcocite and pyrite has been developed. The rate of the mineral sulfide dissolution was related to the rate of oxidation by bacteria attached onto the ore surface. The latter was calculated using the model of Michaelis-Menten, where both temperature and dissolved oxygen in the leach solution were taken into account by the kinetic equation. Oxygen transport through the ore bed was associated with natural air convection originating from the decrease in gas density inside the ore bed, which was attributable not only to heating, but also to humidification and decrease in the oxygen concentration. The model was used to estimate air-velocity fields and profiles of temperature and oxygen concentrations as well as mineral conversions during the bioleaching operation for ore beds with different pyrite contents, bacterial populations, widths, heights, and permeabilities. The model provides a useful tool for the design, improvement, and optimization of industrial operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aguirre, J.V. Wiertz, and R. Badilla-Ohlbaum: Bioleaching: from Molecular Biology to Industrial Applications. R. Badilla, T. Vargas, and L. Herrera, eds., Editorial Universitaria, Santiago, Chile, 1991, pp. 107–17.

    Google Scholar 

  2. L. Ahonen and O. Tuovinen: Appl. Environ. Microbiol., 1989, vol. 55, pp. 3905–10.

    Google Scholar 

  3. Biochemical Engineering Fundamentals, J.E. Bailey and D.F. Ollis, eds., McGraw-Hill Book Company, Singapore, 1986, p. 447.

    Google Scholar 

  4. R.W. Bartlett: Solution Mining: Leaching and Fluid Recovery of Materials, 2nd ed., Gordon and Breach, Reading, United Kingdom, 1992.

    Google Scholar 

  5. R.W. Bartlett: Proc. The Ernest Peters Int. Symp., Vancouver, BC, Canada, June 14–17, 1992; Hydrometallurgy, 1992, vol. 29, pp. 231–60.

  6. R.B. Bhappu, P.H. Johnson, J.A. Brierley, and D.H. Reynolds: Trans. AIME, 1969, vol. 244, pp. 307–20.

    CAS  Google Scholar 

  7. P. Bradley, H.Y. Sohn, and M.K. McCarter: Metall. Trans. B, 1992, vol. 23B, pp. 537–48.

    Google Scholar 

  8. J.J. Byerley and J.M. Scharer: Proceedings of The Ernest Peters International Symposium on Hydrometallurgy Theory and Practice, Vancouver, BC, Canada 1992; Hydrometallurgy, 1992, vol. 30, pp. 107–26.

  9. S. Bustos, S. Castro, and R. Montealegre: FEMS Microbiology Rev., 1993, vol. 11, pp. 231–36.

    Article  CAS  Google Scholar 

  10. J.M. Casas: Master’s Thesis, University of Chile, Santiago, Chile, 1991 (in Spanish).

    Google Scholar 

  11. J.M. Casas: Ph.D. Thesis, University of Chile, Santiago, Chile, 1996 (in Spanish).

    Google Scholar 

  12. J.M. Casas, T. Vargas, J. Martínez, and L. Moreno: Proc. Int. Biohydrometallurgy Symp., Jackson Hole, WY, Aug. 22–25, 1993; in Biohydrometallurgical Technologies, vol. 1, Bioleaching Processes, A.E. Torma, J.E. Wey, and V.L. Lakshmanan, eds., TMS, Warrendale, PA, 1993, pp. 249–58.

  13. L.M. Cathles and W.J. Schlitt: Leaching and Recovery of Copper from as Mined Materials, Las Vegas Symp., W.J. Schlitt, ed., AIME, Warrendale, PA, 1980, pp. 9–27.

    Google Scholar 

  14. D.G. Dixon and J.L. Hendrix: Metall. Trans. B, 1993, vol. 24B, pp. 157–69.

    CAS  Google Scholar 

  15. R. Espejo and P. Ruiz: Biotechnol. Bioeng., 1987, vol. 30 (4), pp. 586–92.

    Article  CAS  Google Scholar 

  16. J.R. Harries and A.I.M. Ritchie: BioHydrometallurgy Proc. Int. Sem. on Dump Leaching and Underground Bacterial Leaching Metals from Ores, G.I. Karavaiko, G. Rossi, and Z.A. Avakyan, eds., UNEP, Moscow, 1990, pp. 335–56.

    Google Scholar 

  17. M. Herrera, J. Wiertz, P. Ruiz, H. Neuburg, and R. Badilla-Ohlbaum: Hydrometallurgy, 1989, vol. 22, pp. 193–206.

    Article  CAS  Google Scholar 

  18. J.B. Hiskey and R. Bhappu: Proc. Int. Symp. on the Impact of Oxygen on the Productivity of Non-Ferrous Metallurgical Process, Winnipeg, MB, Canada, August 23–26, 1987, Pergamon Press, New York, NY, 1987, vol. 2, pp. 165–83.

    Google Scholar 

  19. M. Jo, S. Bustos, R. Espejo, P. Ruiz, J. Rojas, and R. Montealegre: Copper 91, Int. Congr. of Copper, W.C. Cooper, D.J. Kemp, G.E. Lagos, and K.G. Tan, eds., Pergamon Press, New York, NY, 1991, vol. III, pp. 87–97.

    Google Scholar 

  20. M.S. Liu and M.R. Branion: Can. J. Chem. Eng., 1988, vol. 66, pp. 445–51.

    Article  CAS  Google Scholar 

  21. B.W. Madsen and M.E. Wadsworth: U.S. Bureau of Mines Report of Investigations RI-8547, Government Printing Office, Washington, DC, 1981.

    Google Scholar 

  22. M.G. Monroy, M.A. Dziurla, B.-T. Lam, J. Berthelin, and P. Marion: Advances in Bioprocess Engineering, E. Galindo and O.T. Ramirez, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 509–17.

    Google Scholar 

  23. R. Montealegre, S. Bustos, J. Rauld, P. Ruiz, F. Arriagada, J. Rojas, M. Jó, H. Neuburg, H. Yáñez, C. Araya, R. Espejo, J. D’Amico, and R. Reyes: in Electrorefining and Hydrometallurgy of Copper, W.C. Cooper, D.B. Dreisinger, J.E. Dutrizac, H. Hein, and G. Ugarte, eds., vol. III, Printed in Montreal, Canada, Canadian Inst. of Mining, Metallurgy, and Petroleum, pp. 781–93.

  24. L.E. Murr: Minerals Sci. Eng., 1980, vol. 12 (3), pp. 121–88.

    CAS  Google Scholar 

  25. T.N. Narasimhan and P.A. Witherspoon: Water Resources Res., 1976, vol. 12 (1), pp. 57–63.

    Article  Google Scholar 

  26. H.J. Neuburg, J. Castillo, M. Herrera, J. Wiertz, T. Vargas, and R. Badilla-Ohlbaum: Int. J. Mineral Processing, 1991, vol. 31, pp. 247–64.

    Article  CAS  Google Scholar 

  27. G. Pantelis and A.I.M. Ritchie: Appl. Mathematical Modeling, 1992, vol. 16, pp. 553–60.

    Article  MATH  Google Scholar 

  28. Perry’s Chemical Engineers’ Handbook, 6th ed., R.H. Perry and D.W. Green, eds., McGraw-Hill Book Company, Japan, 1984.

    Google Scholar 

  29. G. Rossi: Biohydrometallurgy, McGraw-Hill Book Company GMBH, Hamburg, 1990.

    Google Scholar 

  30. G.D. Smith: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 2nd ed., Claredon Press, Oxford, United Kingdom, 1978, pp. 230–34.

    MATH  Google Scholar 

  31. V. Stanek and J. Szekely: AIChE J., 1974, vol. 20 (5), pp. 974–80.

    Article  CAS  Google Scholar 

  32. T. Van Genuchten: Soil Sci. Soc. Am., 1980, vol. 44, pp. 892–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, J.M., Vargas, T., Martinez, J. et al. Bioleaching model of a copper-sulfide ore bed in heap and dump configurations. Metall Mater Trans B 29, 899–909 (1998). https://doi.org/10.1007/s11663-998-0149-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0149-0

Keywords

Navigation