Skip to main content
Log in

Modeling mean flow and turbulence characteristics in gas-agitated bath with top layer

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A numerical study is presented of the flow characteristics in a gas-agitated water bath in the presence of a top layer of dissimilar fluid. Two systems are considered, comprised separately of silicon and normal pentane as the top layer, to simulate slag cover in a real steelmaking process. The mathematical model involves solution of transport equations for the variables of each phase, with allowance for interphase transfer of momentum. Turbulence is assumed to be a property of the carrier (liquid) phase and represented through solution of additional transport equations for the turbulence kinetic energy, k, and its rate of dissipation, ɛ. The model also accounts for turbulence modulation by the bubbles through enhancement of the source terms in the equations for k and ɛ. The predicted mean and fluctuating velocities, stresses, and turbulence production are generally in the consensus of the experimental data. Both mean flow and turbulence characteristics are found to be suppressed in the water/silicon system of smaller density ratio, indicating enhanced re-entrainment of the top layer, than the water/normal pentane system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

coefficients in the linearized equation

C b :

empirical coefficient for the G kb equation

C d :

drag coefficient

C μ, :

empirical coefficient in the eddy viscosity relation (Eq. [11])

d n :

nozzle diameter

d b :

bubble diameter

D :

phase-mass diffusion coefficient

f :

volume fraction

F :

volumetric interfluid friction

G k :

production of turbulence energy

G kb :

additional production of turbulence energy due to bubble migration

H :

total height of liquid bath (water and slag)

I :

volumetric interphase coefficient in the linearized equation

k :

turbulent kinetic energy

p :

static pressure

Q :

gas flow rate at the nozzle

r :

radial coordinate

r n :

nozzle radius

r*:

dimensionless radial distance (r/R)

R :

radius of cylindrical bath

S :

source term

u :

velocity component in the axial (x) direction

u 0 :

inlet gas velocity at the nozzle

u t :

derivative of turbulence intensity

u τ :

shear velocity

U r :

slip velocity vector

v :

velocity component in the radial (r) direction

x :

axial direction coordinate

x*:

dimensionless axial distance (x/H)

y :

normal distance from the wall

Z :

vertical distance from the nozzle

ɛ :

rate of dissipation of turbulent energy

γ :

interfacial tension

Γ :

transport coefficient

κ :

von Karman constant

φ :

generic flow variable

μ eff :

effective viscosity

μ l :

molecular viscosity

μ t :

turbulent viscosity

ρ :

density

σ :

Schmidt number

τ w :

wall shear stress

References

  1. K. Mori, M. Sano, and Y. Ozawa: Tetsu-to-Hagané, 1983, vol. 69, p. 1714.

    CAS  Google Scholar 

  2. S.H. Kim and R.J. Fruehan: Metall. Trans. B, 1987, vol. 18B, pp. 381–90.

    CAS  Google Scholar 

  3. M. Hirasawa, K. Mori, M. Sano, A. Hatanaka, Y. Shimatani, and Y. Okazaki: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, p. 277.

    CAS  Google Scholar 

  4. M. Hirasawa, K. Mori, M. Sano, Y. Shimatani, and Y. Okazaki: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, p. 283.

    CAS  Google Scholar 

  5. J. Mietz, S. Schneider, and F. Oeters: Steel Res., 1991, vol. 62, p. 10.

    CAS  Google Scholar 

  6. G.G.K. Murthy and S.P. Mehrotra: Ironmaking and Steelmaking, 1992, vol. 19, p. 377.

    CAS  Google Scholar 

  7. Y. Sahai and G.R. St. Pierre: Advances in Transport Processes in Metallurgical Systems, Elsevier, New York, NY, 1992.

    Google Scholar 

  8. F. Gerlach and M.G. Frohberg: Steel Res., 1993, vol. 64, p. 7.

    CAS  Google Scholar 

  9. M. Iguchi, Y. Sumida, R. Okada, and Z. Morita: Iron Steel Inst. Jpn. Int., 1994, vol. 34, p. 164.

    CAS  Google Scholar 

  10. Z. Lin and R.I.L. Guthrie: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 855–64.

    CAS  Google Scholar 

  11. H. Nakajima, D. Mazumdar, and R.I.L. Guthrie: Tetsu-to-Hagané, 1987, vol. 73, p. S. 949

    Google Scholar 

  12. H. Nakajima and R.I.L. Guthrie: Tetsu-to-Hagané, 1987, vol. 73, p. 950.

    Google Scholar 

  13. M. Iguchi, O.J. Ilegbusi, H. Ueda, T. Kuranaga, and Z. Morita: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 35–41.

    CAS  Google Scholar 

  14. J.H. Grevet, J. Szekely, and N. El-Kaddah: Int. J. Heat Mass Transfer, 1982, vol. 25, p. 487.

    Article  Google Scholar 

  15. M. Salcudean, K.Y.M. Lai, and R.I.L. Guthrie: Can. J. Chem. Eng., 1984, vol. 63, p. 51.

    Article  Google Scholar 

  16. A.H. Castillejos and J.K. Brimacombe: SCANINJECT IV, Part 1, No. 16, 4th Conf. on Injection Metallurgy, MEFOS, Lulea, Sweden, 1986, paper no. 16.1.

    Google Scholar 

  17. J.S. Woo: PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1987.

    Google Scholar 

  18. V. Sahajwalla, J.K. Brimacombe, and M.E. Salcudean: SCANINJECT V, Part II, 5th Int. Symp. on Ladle Metallurgy, MEFOS, Lulea, Sweden, 1989, pp. 103–44.

    Google Scholar 

  19. M. Iguchi, J. Tani, T. Uemura, H. Kawabata, and H. Takeuchi: Tetsu-to-Hagané, 1988, vol. 74, p. 1785.

    CAS  Google Scholar 

  20. M. Iguchi, H. Takeuchi, and Z. Morita: Iron Steel Inst. Jpn. Int., 1990, vol. 30, p. 731.

    Google Scholar 

  21. M.P. Schwartz, J.K. Wright, and B.R. Baldock: Proc. Symp. on Mathematical Modeling of Materials Processing Operations, J. Szekely, ed., Palm Springs, CA, 1987, TMS, Warrendale, PA, pp. 565–79.

    Google Scholar 

  22. O.J. Ilegbusi and J. Szekely: Iron Steel Inst. Jpn. Int., 1990, vol. 30, p. 731.

    CAS  Google Scholar 

  23. O.J. Ilegbusi, J. Szekely, M. Iguchi, H. Takeuchi, and Z. Morita: Iron Steel Inst. Jpn. Int., 1993, vol. 33, p. 474.

    CAS  Google Scholar 

  24. J.T. Kuo and G.B. Wallis: Int. J. Multiphase Flow, 1988, vol. 14, p. 545.

    Article  Google Scholar 

  25. B.E. Launder and D.B. Spalding: Lectures in the Mathematical Models of Turbulence, Academic Press, London, 1972, p. 169.

    Google Scholar 

  26. M. Lopez de Bertodano, S.J. Lee, R.T. Lahey, and D.A. Drew: ASME J. Fluids Eng., 1990, vol. 112, p. 107.

    Article  Google Scholar 

  27. H.F. Svendsen, H.A. Jakobsen, and R. Torvik: Chem. Eng. Sci., 1992, vol. 47, pp. 3297–3304.

    Article  CAS  Google Scholar 

  28. R.T. Lahey, M. Lopez de Bertodano, and O.C. Jones: Nucl. Eng. Design, 1993, vol. 141, p. 177.

    Article  CAS  Google Scholar 

  29. S.T. Johansen and F. Boysan: Metall. Trans. B, 1988, vol. 19B, pp. 755–64.

    CAS  Google Scholar 

  30. J.L. Marie: J. Multiphase Flow, 1987, vol. 113, pp. 309–25.

    Article  Google Scholar 

  31. M. Lopez de Bertodano, R.T. Lahey, and O.C. Jones: Int. J. Multiphase Flow, 1994, vol. 20, pp. 805–18.

    Article  Google Scholar 

  32. H.I. Rosten and D.B. Spalding: The PHOENICS Reference Manual, CHAM Technical Report No. TR/200, CHAM Ltd., London, 1987.

    Google Scholar 

  33. H.I. Rosten and D.B. Spalding: The Mathematical Basis of the PHOENICS-EARTH Computer Code, CHAM Technical Report No. 58b, CHAM Ltd., London, 1981.

    Google Scholar 

  34. W. Rodi: Turbulence Models and Their Application in Hydraulics—A State of the Art Review, IAHR, Delft, The Netherlands, 1980.

    Google Scholar 

  35. K. Hanjalik and B.E. Launder: J. Fluid Mech., 1972, vol. 52, p. 609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilegbusi, O.J., Iguchi, M., Nakajima, K. et al. Modeling mean flow and turbulence characteristics in gas-agitated bath with top layer. Metall Mater Trans B 29, 211–222 (1998). https://doi.org/10.1007/s11663-998-0024-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0024-z

Keywords

Navigation