Skip to main content
Log in

Determination of kinetic parameters using differential thermal analysis—Application to the decomposition of CaCO3

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An analytical method has been developed to determine the kinetic parameters of a chemical reaction involving a substantial enthalpy change using differential thermal analysis (DTA). The theoretical treatment is based on fundamental equations considering the heat balance. The analytical derivation was simplified by carefully choosing the experimental conditions. The method was applied to the decomposition of CaCO3 in argon gas. The activation energy of the decomposition of CaCO3 evaluated using the present approach is in very good agreement with the result obtained from the thermogravimetric analyses (TGA) carried out simultaneously with the DTA measurements. The limitation of the technique includes maintaining the temperature rise of the sample small enough not to significantly affect temperature reading but large enough to ensure accurate measurement of the heat generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E. Kissinger: J. Res. Nat. Bur. Standards, 1956, vol. 57, pp. 217–21.

    CAS  Google Scholar 

  2. H.E. Kissinger: Analyt. Chem., 1957, vol. 29 (11), pp. 1700–06.

    Article  Google Scholar 

  3. N.P. Bansal and R.H. Doremus: J. Therm. Analysis, 1984, vol. 29, pp. 115–19.

    Article  CAS  Google Scholar 

  4. R.L. Reed, L. Weber, and B.S. Gottfried: Ind. Eng. Chem., Fund., 1965, vol. 4, pp. 38–46.

    Article  CAS  Google Scholar 

  5. K. Akita and M. Kase: J. Phys. Chem., 1968, vol. 72, pp. 906–13.

    Article  CAS  Google Scholar 

  6. H.J. Borchardt and F. Daniels: J. Am. Chem. Soc., 1957, vol. 79, pp. 41–46.

    Article  CAS  Google Scholar 

  7. H.J. Borchardt: Ph.D. Thesis, University of Wisconsin, Madison, WI, 1956.

    Google Scholar 

  8. A.W.D. Hills: Heat and Mass Transfer in Process Metallurgy, Imperial College, London, 1967, pp. 39–72.

    Google Scholar 

  9. X. Xiao, Du Sichen, and S. Seetharaman: TRITA MEL 138, Theoretical Metallurgy, Royal Institute of Technology, Stockholm, 1994.

    Google Scholar 

  10. M. Reading, D. Dollimore, and R. Whitehead: J. Therm. Analysis, 1991, vol. 37, pp. 2165–88.

    Article  CAS  Google Scholar 

  11. P.K. Gallagher and D.W. Johnson: Thermochim. Acta, 1973, vol. 6, pp. 67–83.

    Article  CAS  Google Scholar 

  12. K.M. Caldwell, P.K. Gallagher, and D.W. Johnson: Thermochim. Acta, 1977, vol. 18, pp. 15–19.

    Article  CAS  Google Scholar 

  13. D. Beruto and A.W. Searcy: J. Chem. Soc. Faraday Trans., 1974, vol. 70 (12), pp. 2145–53.

    CAS  Google Scholar 

  14. C. Guler, D. Dollimore, and G.R. Heal: Thermochim. Acta, 1982, vol. 54, pp. 187–99.

    Article  CAS  Google Scholar 

  15. F. Rouquerol and J. Rouquerol: Proc. 3rd ICTA, H.G. Wiedermann, ed., Birkhäuser, Basel-Stuttgartl, 1972, pp. 373–77.

    Google Scholar 

  16. X. Wang, H.Y. Sohn, and M.E. Schlesinger: Mater. Sci. Eng. A, 1994, vol. A186, pp. 151–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Sichen, D., Seetharaman, S. et al. Determination of kinetic parameters using differential thermal analysis—Application to the decomposition of CaCO3 . Metall Mater Trans B 28, 1157–1164 (1997). https://doi.org/10.1007/s11663-997-0072-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-997-0072-9

Keywords

Navigation