Skip to main content
Log in

Impact of HVOF-Sprayed Ni–Cr and (Co,Ni)O Coatings on the Corrosion Behavior of Cu–Ni–Fe Anodes for Green Aluminum Production

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Cu–Ni–Fe alloys are promising O2-evolving anode materials for green Al production but their corrosion-resistance needs to be improved. In the present work, (Co,Ni)O top-coats and Ni–Cr bond-coats are deposited by high-velocity oxy-fuel (HVOF) process on two Cu–Ni–Fe alloys (Cu-rich and Ni-rich). It is firstly shown that (Co,Ni)O materials have a low solubility in the alumina-saturated cryolitic bath at 1000 °C. Then, the impact of the coatings and substrate composition on their oxidation behavior at 1000 °C in air and during Al electrolysis is studied. Although [Ni–Cr/(Co,Ni)O]-coating significantly increases the dry oxidation resistance of Cu–Ni–Fe alloys, the corrosion-resistance of the [Ni–Cr/(Co,Ni)O]-coated Cu–Ni–Fe anodes is low due to the coating detachment during aluminum electrolysis. However, coating Cu–20Ni–15Fe anodes with a single (Co,Ni)O layer increases its corrosion-resistance, prevents it from fluorination, and leads to the rapid formation of a coherent protective NiFe2O4 layer beneath the (Co,Ni)O top-coat. Under the same conditions, the protective NiFe2O4 layer is not formed on the Ni–25Fe–10Cu anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Kvande and W. Haupin: JOM, 2001, vol. 53, pp. 29–33.

    Article  Google Scholar 

  2. I. Galasiu, R. Galasiu, and J. Thonstad: Inert Anodes for Aluminium Electrolysis, 1st ed. GmbH Aluminium-Verlag Marketing & Komuunikation, Dusseldorf, 2007.

    Google Scholar 

  3. H. Yin, D. Tang, H. Zhu, Y. Zhang, and D. Wang: Electrochem. commun., 2011, vol. 13, pp. 1521–24.

    Article  Google Scholar 

  4. M. Esmaily, A.N. Mortazavi, N. Birbilis, and A. Allanore: Sci. Rep., 2020, vol. 10, p. 14833.

    Article  Google Scholar 

  5. P.S. Krishna, Y. Andrey, and P. Peter: J. Sib. Fed. Univ. Chem., 2018, vol. 11, pp. 18–30.

    Article  Google Scholar 

  6. E. Gavrilova, G. Goupil, B. Davis, D. Guay, and L. Roué: Corros. Sci., 2015, vol. 101, pp. 105–13.

    Article  Google Scholar 

  7. G. Goupil, S. Jucken, D. Poirier, J.G. Legoux, E. Irissou, B. Davis, D. Guay, and L. Roué: Corros. Sci., 2015, vol. 90, pp. 259–65.

    Article  Google Scholar 

  8. S. Jucken, M.H. Martin, E. Irissou, B. Davis, D. Guay, and L. Roué: J. Therm. Spray Technol., 2020, vol. 29, pp. 670–83.

    Article  Google Scholar 

  9. S. Jucken, B. Tougas, B. Davis, D. Guay, and L. Roué: Metall. Mater. Trans. B, 2019, vol. 50, pp. 3103–11.

    Article  Google Scholar 

  10. T. Nguyen and V. De Nora: TMS Light Met., 2006, vol. In: Gallow, pp. 385–90.

  11. M. Chen, B. Hallstedt, and L.J. Gauckler: J. Phase Equilibria, 2003, vol. 24, pp. 212–27.

    Article  Google Scholar 

  12. R.J. Moore and J. White: J. Mater. Sci., 1974, vol. 9, pp. 1393–1400.

    Article  Google Scholar 

  13. S. Kuboon and Y.H. Hu: Ind. Eng. Chem. Res., 2011, vol. 50, pp. 2015–20.

    Article  Google Scholar 

  14. S. Mohammadkhani, E. Schaal, A. Dolatabadi, C. Moreau, B. Davis, D. Guay, and L. Roué: J. Am. Ceram. Soc., 2019, vol. 102, pp. 5063–70.

    Article  Google Scholar 

  15. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos: Thermal Spray Fundamentals, Springer, Boston, 2014.

    Book  Google Scholar 

  16. D. Tejero-Martin, M.R. Rad, A. McDonald, and T. Hussain: J. Therm. Spray Technol., 2019, vol. 28, pp. 598–644.

    Article  Google Scholar 

  17. M. Aghasibeig, F. Tarasi, R.S. Lima, A. Dolatabadi, and C. Moreau: J. Therm. Spray Technol., 2019, vol. 28, pp. 1579–1605.

    Article  Google Scholar 

  18. P.G. Lashmi, P.V. Ananthapadmanabhan, G. Unnikrishnan, and S.T. Aruna: J. Eur. Ceram. Soc., 2020, vol. 40, pp. 2731–45.

    Article  Google Scholar 

  19. D. Toma, W. Brandl, and G. Marginean: Surf. Coat. Technol., 2001, vol. 138, pp. 149–58.

    Article  Google Scholar 

  20. H.I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Aourag, C. Coddet, J. Zwick, and N. Hopkins: Surf. Coat. Technol., 2006, vol. 201, pp. 2303–12.

    Article  Google Scholar 

  21. S. Mohammadkhani, V. Jalilvand, B. Davis, F. B. Ettouil, A. Dolatabadi, L. Roué, C. Moreau, D. Guay (2020) Surf. Coatings Technol., 399, 126168.

  22. S. Mohammadkhani, V. Jalilvand, B. Davis, G.H. Gauthier, A. Dolatabadi, C. Moreau, L. Roué, and D. Guay: Corros. Sci., 2021, vol. 189, 109563.

    Article  Google Scholar 

  23. T. Sundararajan, S. Kuroda, T. Itagaki, and F. Abe: ISIJ Int., 2003, vol. 43, pp. 104–11.

    Article  Google Scholar 

  24. T. Sundararajan, S. Kuroda, and F. Abe: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2165–74.

    Article  Google Scholar 

  25. The Aluminum Association: Inert anode roadmap: A framework for technology development, Washington, 1998.

  26. A.D. McLeod, J.-M. Lihrmann, J.S. Haggerty, and D.R. Sadoway: Light Met., 1987, pp. 357–65.

  27. T.E. Jentoftsen, O.-A. Lorentsen, E.W. Dewing, G.M. Haarberg, and J. Thonstad: Metall. Mater. Trans. B, 2002, vol. 33, pp. 901–08.

    Article  Google Scholar 

  28. S. Jucken, E. Schaal, B. Tougas, B. Davis, D. Guay, and L. Roué: Corros. Sci., 2019, vol. 147, pp. 321–29.

    Article  Google Scholar 

  29. V. Jalilvand, S. Mohammadkhani, F.B. Ettouil, L. Roué, A. Dolatabadi, D. Guay, and C. Moreau: Surf. Coat. Technol., 2022, vol. 441, p. 128576.

    Article  Google Scholar 

  30. D.H. DeYoung: in Essential Readings in Light Metals, vol, Springer International Publishing, Cham, 2016, pp. 1073–81.

    Book  Google Scholar 

  31. M.W. Chase, A.I. of Physics., U. States., N.B. of Standards., and A.C. Society.: JANAF Thermochemical Tables, American Chemical Society and the American Institute of Physics for the National Bureau of Standards, [New York], 1985.

  32. R.D. Holmes, H.S.C. O’Neill, and R.J. Arculus: Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 2439–52.

    Article  Google Scholar 

  33. S.E. Ziemniak, L.M. Anovitz, R.A. Castelli, and W.D. Porter: J. Chem. Thermodyn., 2007, vol. 39, pp. 1474–92.

    Article  Google Scholar 

  34. F.H. Stott: Mater. Sci. Technol., 1989, vol. 5, pp. 734–40.

    Article  Google Scholar 

  35. S.V. Divinski, F. Hisker, C. Herzig, R. Filipek, and M. Danielewski: Defect Diffus Forum, 2005, vol. 237–240, pp. 50–61.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Natural Sciences and Engineering Research Council (NSERC) through the Strategic program (STPGP/494283-2016), Prima Québec (Grant R13-13-001), Metal7 and Kingston Process Metallurgy for supporting this work. Vahid Jalilvand wishes to acknowledge a doctoral research scholarship from the Fonds de Recherche du Québec-Nature et Technologies (FRQ-NT). Saeed Mohammadkhani acknowledges the support of the UNESCO Chair Materials for Energy Conversion, Saving and Storage (MATECSS) Excellence Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Moreau or L. Roué.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadkhani, S., Jalilvand, V., Dolatabadi, A. et al. Impact of HVOF-Sprayed Ni–Cr and (Co,Ni)O Coatings on the Corrosion Behavior of Cu–Ni–Fe Anodes for Green Aluminum Production. Metall Mater Trans B 53, 3543–3556 (2022). https://doi.org/10.1007/s11663-022-02619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02619-x

Navigation