Skip to main content
Log in

A Sub-Particle Model for Capillary Interaction Between Arbitrarily Shaped Nonmetallic Inclusions With an Undulated Contact Line

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A numerical sub-particle model is developed to study the dynamic behavior of nonmetallic inclusions (NMIs) attached to the gas/steel or slag/steel interface due to capillary interaction, where the interface is deformed in a quadrupolar way due to the presence of the NMIs. The model is easy to be implemented since the Young–Laplace equation that describes the meniscus shape does not have to be solved for complex boundary conditions. The parent NMIs/particles are rebuilt in the model by closely packed spherical mono-sized or multi-sized sub-particles, with each sub-particle a small ‘quadrupole.’ The ‘quadrupole’ moment of sub-particles is assumed to be additive, and the net ‘quadrupole’ moment of all sub-particles should be equal to the moment of the parent particle. The capillary interaction between the quadrupolar parent particles is approximated by the net capillary interaction between the constituent sub-particles from one parcel to the other. The conditions for a good representation of the parent particle using a sub-particle parcel were determined, including the appropriate size of the sub-particles and the mass centers’ deviation. The anisotropic meniscus shape around an isolated ellipsoid and the anisotropic interaction energy and force from the side–side and tip–tip configurations are captured by the sub-particle model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

a :

Semi-minor axis of an ellipsoid (m)

b :

Semi-major axis of an ellipsoid (m)

e :

Elliptical eccentricity

F QP-QP :

Capillary force between parent ‘quadrupoles’ (N)

f QP- QP :

Capillary force between two quadrupolar sub-particles (N)

g :

Gravity acceleration vector (m/s2)

H Y :

Contact line undulation amplitude of parent particle Y (m)

H m , Y :

Capillary ‘quadrupole’ moment for parent particle Y (m3)

H’ m , Y :

Capillary ‘quadrupole’ moment for sub-particle Y (m)3

I QP-QP, W :

Coefficient for capillary energy

I QP-QP, F :

Coefficient for capillary force

l :

Distance between sub-particle centers (m)

L :

Distance between parent particle centers (m)

q 1 :

Capillary length (m)

r :

Distance from a particle center (m)

r Y :

Radius of sub-particle Y (m)

r c,Y :

Radius of the contact line for sub-particle Y (m)

R Y :

Radius of parent particle Y (m)

Rc, Y :

Radius of the contact line for parent particle Y (m)

W QP - QP :

Capillary interaction energy between quadrupolar parent particles (J)

w QP - QP :

Capillary interaction energy between quadrupolar sub-particles (J)

α Y :

Contact angle between the liquid and solid particle Y

α min :

Minimum contact angle due to undulation

α max :

Maximum contact angle due to undulation

Δα :

Angle difference between αmax and αmin

γ :

Surface tension (N/m)

η Y :

Filling fraction of parcel Y

ρ I, ρ II :

Densities of fluid phases (kg/m3)

ρ Y :

Density of particles Y (kg/m3)

ϕ :

Capillary force percentage error

ω :

Capillary energy percentage error

X :

Energy ratio between side–side to tip–tip interaction

\({\sigma }_{\text{m},Y}\) :

Volume density of ‘quadrupole’ moment of parent particle Y

\({\sigma }_{\text{m},Y}^{,}\) :

Volume density of ‘quadrupole’ moment of sub-particle Y

m:

Moment

Y :

Particle index, A or B

W :

Energy

QP:

Capillary ‘quadrupole

References

  1. H. Yin, H. Shibata, T. Emi, and M. Suziki: ISIJ Int., 1997, vol. 37, pp. 946–55.

    Google Scholar 

  2. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.

    Google Scholar 

  3. K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 629–41.

    Google Scholar 

  4. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2092–2103.

    Google Scholar 

  5. B. Coletti, B. Blanpain, S. Vantilt, and S. Sridhar: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 533–38.

    Google Scholar 

  6. Y. Xia, B. Gates, and Z.Y. Li: Adv. Mater., 2001, vol. 13, pp. 409–13.

    Google Scholar 

  7. H. Yang, P. Jiang, and B. Jiang: J. Collid. Interface Sci., 2012, vol. 370, pp. 11–18.

    Google Scholar 

  8. N. Denkov, I. Ivanov, P. Kralchevsky, and D. Wasan: J. Collid. Interface Sci., 1992, vol. 150, pp. 589–93.

    Google Scholar 

  9. R. Aveyard, B.P. Binks, and J.H. Clint: Angew. Chem., 2003, vol. 100–102, pp. 503–46.

    Google Scholar 

  10. S. Sacanna, W.K. Kegel, and A.P. Philipse: Phys. Rev. Lett., 2007, vol. 98, 158301.

    Google Scholar 

  11. T.N. Hunter, R.J. Pugh, G.V. Franks, and G.J. Jameson: Adv. Colloid. Interface Sci., 2008, vol. 137, pp. 57–81.

    Google Scholar 

  12. S. Lam, K.P. Velikov, and O.D. Velev: Curr. Opin. Colloid Interface Sci., 2014, vol. 19, pp. 490–500.

    Google Scholar 

  13. J. Appelberg, K. Nakajima, H. Shibata, A. Tilliander, and P. Jnsson: Mater. Sci. Eng. A, 2008, vol. 495, pp. 330–34.

    Google Scholar 

  14. K.D. Danov and P.A. Kralchevsky: Angew. Chem., 2010, vol. 154, pp. 91–103.

    Google Scholar 

  15. M.M. Nicolson: Math. Proc. Camb. Philos. Soc., 1949, vol. 45, pp. 288–95.

    Google Scholar 

  16. D.Y. Chan, J.D. Henry, and L.R. White: J. Collid. Interface Sci., 1981, vol. 79, pp. 410–18.

    Google Scholar 

  17. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, and K. Nagayama: J. Colloid. Interface Sci., 1993, vol. 157, pp. 100–12.

    Google Scholar 

  18. P. Kralchevsky, V. Paunov, I. Ivanov, and K. Nagayama: J. Collid. Interface Sci., 1992, vol. 151, pp. 79–94.

    Google Scholar 

  19. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 79–85.

    Google Scholar 

  20. J. Wikstrm, K. Nakajima, H. Shibata, A. Tilliander, and P. Jnsson: Ironmaking Steelmaking, 2008, vol. 35, pp. 589–99.

    Google Scholar 

  21. H. Shibata, H. Yin, and T. Emi: Philos. Trans. R. Soc. Lond. A, 1998, vol. 356, pp. 957–66.

    Google Scholar 

  22. S. Vantilt, B. Coletti, B. Blanpain, J. Fransaer, and P. Wollants: ISIJ Int., 2004, vol. 44, pp. 1–10.

    Google Scholar 

  23. P.A. Chralchevsky and K. Nagayama: Particles at fluid interfaces and membranes, 1st ed. Elsevier Science, Amsterdam, 2001.

    Google Scholar 

  24. A. Dani, G. Keiser, M. Yeganeh, and C. Maldarelli: Langmuir, 2015, vol. 31, pp. 13290–3302.

    Google Scholar 

  25. D. Stamou and C. Duschl: Phys. Rev. E, 2000, vol. 62, pp. 5263–72.

    Google Scholar 

  26. J.B. Fournier and P. Galatola: Phys. Rev. E, 2002, vol. 65, p. 31601.

    Google Scholar 

  27. P.A. Kralchevsky, N.D. Denkov, and K.D. Danov: Langmuir, 2001, vol. 17, pp. 7694–705.

    Google Scholar 

  28. K.D. Danov, P.A. Kralchevsky, B.N. Naydenov, and G. Brenn: J. Collid. Interface Sci., 2005, vol. 287, pp. 121–34.

    Google Scholar 

  29. J. Lucassen: Colloids. Surf., 1992, vol. 65, pp. 131–37.

    Google Scholar 

  30. W.A. Gifford and L.E. Scriven: Chem. Eng. Sci., 1971, vol. 26, pp. 287–97.

    Google Scholar 

  31. E.P. Lewandowski, M. Cavallaro, L. Botto, J.C. Bernate, V. Garbin, and K.J. Stebe: Langmuir, 2010, vol. 26, pp. 15142–5154.

    Google Scholar 

  32. H. Lehle, E. Noruzifar, and M. Oettel: Phys. Rev. E, 2008, vol. 26, pp. 151–60.

    Google Scholar 

  33. B.J. Newton, R. Mohammed, G.B. Davies, L. Botto, and D.M.A. Buzza: ACS Omega, 2018, vol. 3, pp. 14962–4972.

    Google Scholar 

  34. M. Cavallaro, L. Botto, E.P. Lewandowski, M. Wang, and K.J. Stebe: Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 20923–20928.

    Google Scholar 

  35. L. Botto, L. Yao, R.L. Leheny, and K.J. Stebe: Soft Matter, 2012, vol. 8, p. 4971.

    Google Scholar 

  36. H. Rezvantalab and S. Shojaei-Zadeh: Langmuir, 2013, vol. 29, pp. 14962–4970.

    Google Scholar 

  37. S. Dasgupta, M. Katava, M. Faraj, T. Auth, and G. Gompper: Langmuir, 2014, vol. 30, pp. 11873–1882.

    Google Scholar 

  38. G. Soligno, M. Dijkstra, and R. van Roij: J. Chem. Phys., 2014, vol. 141, 244702.

    Google Scholar 

  39. G. Soligno, M. Dijkstra, and R. van Roij: Phys. Rev. Lett., 2016, vol. 116, 258001.

    Google Scholar 

  40. P. A. Cundall: Proc. Symp. Int. Soc. Rock Mech., 1971, pp. 128–32.

  41. Y. Tsuji, T. Tanaka, and T. Ishida: Powder Technol., 1992, vol. 71, pp. 239–50.

    Google Scholar 

  42. Z. Zhou, H. Zhu, A. Yu, B. Wright, D. Pinson, and P. Zulli: ISIJ Int., 2005, vol. 45, pp. 1828–1837.

    Google Scholar 

  43. F. Chaumeil and M. Crapper: Particuology, 2014, vol. 15, pp. 94–106.

    Google Scholar 

  44. Z. Qiu, A. Malfliet, B. Blanpain, and M. Guo: Metall and Materi Trans B, 2022, vol. 53B, pp. 1775–1791.

    Google Scholar 

  45. Z. Qiu, A. Malfliet, M. Guo, and B. Blanpain: manuscript submitted for publication, 2022.

  46. J.C. Loudet, A.G. Yodh, and B. Pouligny: Phys. Rev. Lett., 2006, vol. 97, p. 18304.

    Google Scholar 

  47. J.C. Loudet and B. Pouligny: Europhys. Lett., 2009, vol. 85, p. 28003.

    Google Scholar 

  48. J. de Graaf, M. Dijkstra, and R. van Roij: Phys. Rev. E, 2009, vol. 80, p. 51405.

    Google Scholar 

  49. J. de Graaf, M. Dijkstra, and R. van Roij: J. Chem. Phys., 2010, vol. 132, 164902.

    Google Scholar 

  50. W. van der Stam, A.P. Gantapara, Q.A. Akkerman, G. Soligno, J.D. Meeldijk, R. van Roij, M. Dijkstra, and C. de Mello Donega: Nano. Lett., 2014, vol. 14, pp. 1032–1037.

    Google Scholar 

  51. N. Ballard and S.A.F. Bon: J. Collid. Interface Sci., 2015, vol. 448, pp. 533–44.

    Google Scholar 

  52. B.J. Park and D. Lee: Soft Matter, 2012, vol. 8, p. 7690.

    Google Scholar 

  53. B.J. Park and D. Lee: ACS Nano, 2012, vol. 6, pp. 782–90.

    Google Scholar 

  54. C.G. Gray and K.E. Gubbins: Theory of molecular fluids, Clarendon Press, Oxford, 1984.

    Google Scholar 

  55. J.C. Loudet, A.M. Alsayed, J. Zhang, and A.G. Yodh: Phys. Rev. Lett., 2005, vol. 94, p. 18301.

    Google Scholar 

  56. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2379–88.

    Google Scholar 

Download references

Acknowledgments

The authors thank the China Scholarship Council (CSC) for financial support (File No. 201706080018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Qiu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Malfliet, A., Guo, M. et al. A Sub-Particle Model for Capillary Interaction Between Arbitrarily Shaped Nonmetallic Inclusions With an Undulated Contact Line. Metall Mater Trans B 53, 3442–3458 (2022). https://doi.org/10.1007/s11663-022-02608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02608-0

Navigation