Skip to main content
Log in

Sustainable Direct Synthesis of TiAl Alloys Through Magnesiothermic Reduction

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Direct synthesis of TiAl alloys through magnesiothermic reduction of an intermediate TiAl2O5 phase was demonstrated at various temperatures and Mg/TiAl2O5 molar ratios. X-ray diffraction (XRD) results verified TiAl alloys could be directly synthesized at a Mg/TiAl2O5 molar ratio of 25 at 900 °C. At lower Mg/TiAl2O5 molar ratios of 12.5 and 5, the desired TiAl alloys underwent a transition from the TiAl alloy to the TiAl2 alloy. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) analysis indicated that a dense Al2O3 film could be easily generated on the surface of the TiAl alloy preventing further oxidation of TiAl alloys. The by-products from the magnesiothermic reduction mainly consisted of MgAl2O4 spinel, which could not be separated from the metallic alloys with a solution of diluted HCl and HNO3 but could be partially separated by particle size. Particle size screening suggested that particles larger than 45 μm mainly contained MgAl2O4 spinel-based by-products and particle size below 45 μm consisted of a mixture of TiAl2 alloys and MgAl2O4 spinel-based by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1. A. Sinha, G.G. Khan, B. Mondal, J.D. Majumdar, and P.P. Chattopadhyay: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1951-58.

    Article  Google Scholar 

  2. 2. H. Lefler, Z.Z. Fang, Y. Zhang, P. Sun, and Y. Xia: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2998-3006.

    Article  Google Scholar 

  3. 3. O. Takeda, K. Suda, X. Lu, and H. Zhu: J. Sustain. Metall., 2018, vol. 4, pp. 506-15.

    Article  Google Scholar 

  4. 4. C. Du, Z. Wang, J. Hou, S. Jiao, and H. Zhu: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1750-56.

    Article  Google Scholar 

  5. 5. F. Gao, Z. Nie, D. Yang, B. Sun, Y. Liu, X. Gong, and Z. Wang: J. Clean. Prod., 2018, vol. 174, pp. 771-79.

    Article  CAS  Google Scholar 

  6. 6. D. Hu, A. Dolganov, M. Ma, B. Bhattacharya, M.T. Bishop, and G.Z. Chen: JOM, 2018, vol. 70, pp. 129-37.

    Article  CAS  Google Scholar 

  7. 7. M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, and G.Z. Chen: J. Alloys Compd., 2006, vol. 420, pp. 37-45.

    Article  CAS  Google Scholar 

  8. 8. I. Park, T. Abiko, and T.H. Okabe: J. Phys. Chem. Solids, 2005, vol. 66, pp. 410-13.

    Article  CAS  Google Scholar 

  9. 9. K. Ono and R.O. Suzuki: JOM, 2002, vol. 54, pp. 59-61.

    Article  CAS  Google Scholar 

  10. 10. Z. Zhou, Y. Hua, C. Xu, J. Li, Y. Li, K. Gong, J. Ru, and L. Xiong: JOM, 2016, vol. 68, pp. 532-39.

    Article  CAS  Google Scholar 

  11. 11. K. Choi, H. Choi, and I. Sohn: Metall. Mater. Trans. B, 2017, vol. 48, pp. 922-32.

    Article  Google Scholar 

  12. 12. K. Choi, K.H. Lee, B. Ali, S. Choi, K. Park, and I. Sohn: Met. Mater. Int., 2017, vol. 23, pp. 1037-44.

    Article  CAS  Google Scholar 

  13. 13. R. Bolivar and B. Friedrich: J. Sustain. Metall., 2019, vol. 5, pp. 219-29.

    Article  Google Scholar 

  14. 14. M. Liu and Z. Guo: Chin. J. Nonferrous Met., 2003, vol. 13, pp. 1245-50.

    Google Scholar 

  15. 15. A. Knaislová, P. Novák, F. Průša, M. Cabibbo, L. Jaworska, and D. Vojtěch: J. Alloys Compd., 2019, vol. 810, pp. 151895.

    Article  Google Scholar 

  16. 16. P. Halli, P. Taskinen, and R. Eriç: J. Sustain. Metall., 2017, vol. 3, pp. 191-206.

    Article  Google Scholar 

  17. 17. T. Hyodo and N. Mochizuki: J. MMIJ, 2007, vol. 123, pp. 698-703. (In Japanese).

    Article  CAS  Google Scholar 

  18. 18. S. Kosemura, S. Anbo, E. Fukasawa, and Y. Hatta: J. MMIJ, 2007, vol. 123, pp. 693-97. (In Japanese).

    Article  CAS  Google Scholar 

  19. 19. Y.K. Taninouchi, Y. Hamanaka, and T.H. Okabe: Mater. Trans., 2015, vol. 56, pp. 1-9.

    Article  CAS  Google Scholar 

  20. 20. O. Takeda, T. Ouchi, and T.H. Okabe: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1315-28.

    Article  Google Scholar 

  21. H. Agripa and I. Botef: Modern Production Methods for Titanium Alloys: A Review, Titan. Alloy. Nov. Asp. Their Manuf. Process, Working Title, 2019. https://doi.org/10.5772/intechopen.81712.

  22. 22. W. Gu, K. Mimura, and K. Taniuchi: J. Japan Ins. Light Met., 1981, vol. 31, pp. 462-68.

    Article  Google Scholar 

  23. 23. J.D. Leland: JOM, 1996, vol. 48, pp. 52-55.

    Article  CAS  Google Scholar 

  24. 24. S. Takeuchi, T. Kurosawa, and M. Tezuka: J. Jpn. Inst. Met., 1959, vol. 23, pp. 625-29.

    Article  Google Scholar 

  25. 25. G.R.B. Elliott: JOM, 1998, vol. 50, pp. 48-49.

    Article  CAS  Google Scholar 

  26. 26. D.A. Hansen and S.J. Gerdemann: JOM, 1998, vol. 50, pp. 56-58.

    Article  CAS  Google Scholar 

  27. 27. H.Y. Sohn: JOM, 1998, vol. 50, pp. 50-51.

    Article  CAS  Google Scholar 

  28. 28. N. Kameyama, S. Satoh, M. Awata, and S. Yamaguchi: J. .Res. Inst, 1955, vol. 49, pp. 1-4.

    Google Scholar 

  29. 29. M. Maeda, T. Yahata, K. Mitugi, and T. Ikeda: Mater. Trans., 2007, vol. 34, pp. 599-603.

    Article  Google Scholar 

  30. 30. T. Yahata, T. Ikeda, and M. Maeda: Metall. Mater. Trans. B, 1993, vol. 24, pp. 599-604.

    Article  Google Scholar 

  31. 31. K. Choi and I. Sohn: JOM, 2019, vol. 71, pp. 3606-13.

    Article  CAS  Google Scholar 

  32. 32. S. Choi, B. Ali, K. Choi, S. Hyun, J. Sim, W. Choi, W. Joo, J. Lim, T. Lee, and T. Kim: Arch. Metall. Mater., 2017, vol. 62, pp. 1051-56.

    Article  CAS  Google Scholar 

  33. 33. G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, and C.T. Liu: Nat. Mater., 2016, vol. 15, pp. 876-81.

    Article  CAS  Google Scholar 

  34. 34. S. Qu, S. Tang, A. Feng, C. Feng, J. Shen, and D. Chen: Acta Mater., 2018, vol. 148, pp. 300-10.

    Article  CAS  Google Scholar 

  35. S. Zhang, J. Liu, Q. Zhao, C. Zhang, L. Bolzoni, and F. Yang: J. Alloys Compd., 2019, vol., pp. 152815.

  36. 36. A. Begunov and L. Begunova: Earth Environ. Sci., 2020, vol. 459, pp. 032009.

    Google Scholar 

  37. 37. M. Hosseinpouri, S. Mirmonsef, and M. Soltanieh: Can. Metall. Q., 2007, vol. 46, pp. 139-43.

    Article  CAS  Google Scholar 

  38. 38. A. Kamali and J. Fahim: Int. J. Self-Propag. High-Temp Synth., 2009, vol. 18, pp. 7-10.

    Article  CAS  Google Scholar 

  39. M. Maeda, T. Yahata, K. Mitugi, and T. Ikeda: Mater. Trans. JIM, 1993, vol. 34, pp. 599-603.

    Article  CAS  Google Scholar 

  40. 40. A. Maleki, M. Panjepour, B. Niroumand, and M. Meratian: J. Mater. Sci., 2010, vol. 45, pp. 5574-80.

    Article  CAS  Google Scholar 

  41. P.K. Tripathy and D.J. Fray, Proceedings of the Fray International Symposium, Idaho National Laboratory (INL), 2011.

  42. S. Ro, T. Ueki, M. Ikezawa, T. Oishi, and K. Ono: Mater. Trans. JIM, 1991, vol. 32, pp. 272-77.

    Article  Google Scholar 

  43. 43. A. Kamali, S. Hadavi, H. Razavizadeh, and J. Fahim: Iranian J. Mater. Sci. Eng., 2008, vol. 5, pp. 8-14.

    CAS  Google Scholar 

  44. S. Ro, M. Ikezawa, T. Oishi, and K. Ono: Mater. Trans. JIM, 1990, vol. 31, pp. 61-68.

    Article  Google Scholar 

  45. A. Kamali and M. Farhang: Int. J. Sport Health Sci., 2008, vol. 17, pp. 144-48.

    CAS  Google Scholar 

  46. 46. N. Goel, J. Cahoon, and B. Mikkelsen: Metall. Tran. A, 1989, vol. 20, pp. 197-203.

    Article  Google Scholar 

  47. 47. S. Fan, Z. Dou, T. Zhang, Y. Liu, and L. Niu: Metall. Mater. Trans. B, 2018, vol. 50, pp. 282-90.

    Google Scholar 

  48. 48. K. Hu, X. Lv, W. Yu, Z. Yan, and S. Li: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2982-92.

    Article  Google Scholar 

  49. A.A. Valeeva, S.Z. Nazarova, and A.A. Rempel: J. Alloys Compd., 2019, vol., p. 153215.

  50. 50. G. Vásquez, S.Z. Karazhanov, D. Maestre, A. Cremades, J. Piqueras, and S.E. Foss: Phys. Rev. B, 2016, vol. 94, pp. 235209.

    Article  Google Scholar 

  51. 51. D. Batalu, G. Cosmeleata, and A. Aloman: UPB Sci. Bull. Ser. B Chem. Mater. Sci, 2006, vol. 68, pp. 77-90.

    CAS  Google Scholar 

  52. K. Persson: Materials data on TiAl2O5 (SG:63) by materials project. United States, 2016. https://doi.org/10.17188/1208494.

  53. 53. J. Gao, Y. He, and W. Gao: Thin Solid Films, 2012, vol. 520, pp. 2060-65.

    Article  CAS  Google Scholar 

  54. 54. Z. Li, W. Gao, S. Li, D. Zhang, and Y. He: Oxid. Met., 2001, vol. 56, pp. 495-516.

    Article  CAS  Google Scholar 

  55. M. Yang and S. Wu: Bull. College Eng., 2003, vol. 89, pp. 3-19.

    CAS  Google Scholar 

  56. D.W. Mckee and S.C. Huang: MRS Online Proceedings Library Archive, 1990, vol. 213, pp. 939–43.

  57. 57. G. Niu, D. Wang, Z. Yang, and Y. Wang: Ceram. Int., 2016, vol. 42, pp. 6924-34.

    Article  CAS  Google Scholar 

  58. 58. F. Wang, J. Lin, Y. Liang, S. Shang, and Z. Liu: Mater. Des., 2016, vol. 109, pp. 700-08.

    Article  CAS  Google Scholar 

  59. 59. D. Ahmadkhaniha, M.H. Sohi, A. Salehi, and R. Tahavvori: J. Magnes. Alloy, 2016, vol. 4, pp. 314-18.

    Article  CAS  Google Scholar 

  60. Y. Wu: Research on tunnel dust settlement rule and reprinting spraying dust removing system, Taiyuan University of Technology. China. Master Thesis, 2007.

  61. 61. F. Meshkani and M. Rezaei: Powder Technol., 2009, vol. 196, pp. 85-88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the third stage of the Brain Korea 21 Plus Project of the Division of Creative Materials in 2018 and the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2018R1A2B2006609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 10, 2020; accepted December 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Seo, M. & Sohn, I. Sustainable Direct Synthesis of TiAl Alloys Through Magnesiothermic Reduction. Metall Mater Trans B 52, 883–895 (2021). https://doi.org/10.1007/s11663-021-02061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02061-5

Navigation