Skip to main content
Log in

Interaction Between Mineral Phases in a Hematite Iron Ore and Fluxing Materials During Sintering

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The interaction between mineral phases in two commercial iron ores and flux materials (CaO, MgO, SiO2, and Al2O3) was studied under 0.5 kPa O2 partial pressure while heating to different temperatures. CaO was the most effective flux for liquid phase generation during sintering. For a hematite ore with few gangue components (Ore A), the formation of an initial liquid phase commenced at ~ 1275 °C, with the liquid volume increasing dramatically as temperature increased to 1300 °C. For a goethite containing hematite ore (Ore B), the formation of an initial liquid phase through interaction between goethite and CaO was observed when heating to 1225 °C, with the majority of goethite transformed to liquid at 1250 °C. The porous morphology of sintered goethite and finely distributed quartz results in a high reactivity with CaO. The initial liquid phase penetrated into the pores within the hematite matrix, promoting assimilation and by 1300 °C, all hematite in Ore B was dissolved. The hematite/martite phase in Ore B was much easier to assimilate than that in Ore A due to the presence of goethite. MgO diffused into hematite ore grains by solid-state diffusion and formed a solid solution (Fe, Mg)O∙Fe2O3 without the formation of a liquid phase. The reaction layer formed by MgO diffusion was limited to approx. 60 μm at 1300 °C. The porous morphology in goethite facilitated MgO diffusion. However, the cavities and cracks caused by goethite dehydration significantly restricted solid phase diffusion of Mg2+. There was no observed interaction between Al2O3 and SiO2 with Ores A and B when heated to 1300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Wang: Metallurgical Engineering, 2016, vol. 3, pp. 79-86.

    Article  CAS  Google Scholar 

  2. S. Wu, H. L. Han, H. X. Li, J. Xu, S. D. Yang, and X. Liu: International Journal of Minerals, Metallurgy, and Materials, 2010, vol. 17, pp. 11-16.

    Article  CAS  Google Scholar 

  3. Z. Xiao, L. Chen, Y. Yang, X. Li, and M. Barati: ISIJ International, 2017, vol. 57, pp. 795-804.

    Article  CAS  Google Scholar 

  4. J. Clout and J. Manuel: Powder Technology, 2003, vol. 130, pp. 393-399.

    Article  CAS  Google Scholar 

  5. R. Morris and M. Kneeshaw: Australian Journal of Earth Sciences, 2011, vol. 58, pp. 417-451.

    Article  CAS  Google Scholar 

  6. C. E. Loo: ISIJ International, 2005, vol. 45, pp. 436-448.

    Article  CAS  Google Scholar 

  7. C. E. Loo, L. T. Matthews, and D. P. O’dea: ISIJ International, 2011, vol. 51, pp. 930-938.

    Article  CAS  Google Scholar 

  8. D. Debrincat and L. Ce: ISIJ International, 2004, vol. 44, pp. 1308-1317.

    Article  CAS  Google Scholar 

  9. X. Guo and Y. Ono: Memoirs of the Faculty of Engineering Kyushu University, 1992, vol. 52, pp. 7-21.

    CAS  Google Scholar 

  10. H. Li: ISIJ International, 1989, vol. 29, pp. 24-32.

    Article  Google Scholar 

  11. N. Oyama, T. Higuchi, S. Machida, H. Sato, and K. Takeda: ISIJ International, 2009, vol. 49, pp. 650-658.

    Article  CAS  Google Scholar 

  12. Z. Wang, D. Pinson, S. Chew, B. J. Monaghan, H. Rogers, and G. Zhang: ISIJ International, 2016, vol. 56, pp. 505-512.

    Article  CAS  Google Scholar 

  13. H. Li: ISIJ International, 1993, vol. 33, pp. 462-473.

    Article  Google Scholar 

  14. E. Kasai, Y. Sakano, T. Kawaguchi, and T. Nakamura: ISIJ International, 2000, vol. 40, pp. 857-862.

    Article  CAS  Google Scholar 

  15. H. Li, D. Pinson, P. Zulli, L. Lu, R. Longbottom, S. Chew, B. Monaghan, G. Zhang: Metallurgical and Materials Transactions B, 2018, vol. 49, pp. 2285-2297.

    Article  Google Scholar 

  16. H. Li-Heng, J. A. Whiteman: ISIJ International, 1989, vol. 29, pp. 24-32.

    Article  Google Scholar 

  17. H. Li, D. Pinson, P. Zulli, L. Lu, R. Longbottom, S. Chew, B. Monaghan, G. Zhang: Journal of Hazardous Materials, 2019, vol. 385(121592), pp. 1-13.

    Google Scholar 

  18. Y. Guo and X. Guo: ISIJ International, 2017, vol. 57, pp. 228-235.

    Article  CAS  Google Scholar 

  19. V. D. Eisenhüttenleute and M. Allibert: Slag atlas, Verlag Stahleisen, Dusseldorf, Germany, 1995, pp. 70.

    Google Scholar 

  20. Z. Wang, D. Pinson, S. Chew, H. Rogers, B. J. Monaghan, G. Zhang: ISIJ International, 2016, vol. 56, pp. 1315-1324.

    Article  CAS  Google Scholar 

  21. S. Wu, H. Han, W. Jiang, L. Zhu, G. Feng, Z. Zhang: Journal of University of Science and Technology Beijing, 2009, vol. 31, pp. 428-32.

    CAS  Google Scholar 

  22. E. W. Washburn: Physical Review, 1921, vol. 17, pp. 273-283.

    Article  Google Scholar 

  23. R. M. German, Liquid Phase Sintering, Springer Science & Business Media, Berlin, Germany, 2013, pp. 13-41.

    Google Scholar 

  24. N. V. Scarlett, M. I. Pownceby, I. C. Madsen, and A. N. Christensen: Metallurgical and Materials Transactions B, 2004, vol. 35, pp. 929-936.

    Article  CAS  Google Scholar 

  25. A. Cores, A. Babich, M. Muñiz, S. Ferreira, and J. Mochon: ISIJ International, 2010, vol. 50, pp. 1089-1098.

    Article  CAS  Google Scholar 

  26. L. Ping, A. Azad and T.W. Dung: Materials research bulletin, 2001, vol. 36, pp. 1417-1430.

    Article  Google Scholar 

  27. R. J. Borg and G. J. Dienes: An Introduction to Solid State Diffusion, Elsevier, Oxford, 2012, pp. 24-52.

    Google Scholar 

  28. M. E. Brown, D. Dollimore, and A. K. Galwey: Reactions in the Solid State, Elsevier, Amsterdam, 1980, pp. 41-109.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Australian Research Council Research Hub for Australian Steel Manufacturing (Project Number IH130100017) and the support of BlueScope Steel Ltd. The SEM/EDS observations were carried out at the Electron Microscopy Center of the University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 3, 2020; accepted October 14, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Pinson, D.J., Zulli, P. et al. Interaction Between Mineral Phases in a Hematite Iron Ore and Fluxing Materials During Sintering. Metall Mater Trans B 52, 267–281 (2021). https://doi.org/10.1007/s11663-020-02010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02010-8

Navigation