Skip to main content
Log in

A New Model for Predicting Oxide-Related Defects in Aluminum Castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The formation of oxide-related defects, including entrained oxide inclusions and oxide-induced gas/shrinkage porosity, during cavity fill and solidification has been inextricably linked to reduced mechanical properties in aluminum castings. Although the oxide formation and entrainment process can be easily understood, it remains difficult to accurately predict the location and severity of oxide-related defects in solidification products. To address the lack of predictive capability, the oxide entrainment number (OEN) model was developed and coupled to a three-dimensional, computational fluid dynamics software to accurately predict both the location and severity of oxide-related defects in aluminum castings. This first computationally efficient model for such application was validated on a geometrically complex aluminum casting where the predictive capability was confirmed via X-ray computed tomography (CT). Additionally, the OEN model can be used to aid in location-specific property prediction as tensile samples taken from the casting showed a reduction in mechanical properties in regions of high defect concentrations predicted by the OEN. The validation of the new OEN model provides a crucial link in an integrated computation materials engineering framework for design and manufacturing of high-quality cast components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.G. Thiele: Aluminium, 1962, vol. 38, pp. 707–15.

    CAS  Google Scholar 

  2. X. Cao and J. Campbell: Can. Metall. Q., 2005, vol. 44, pp. 435–48.

    Article  CAS  Google Scholar 

  3. R. Gopalan and N.K. Prabhu: Mater. Sci. Technol., 2011, vol. 27, pp. 1757–69.

    Article  CAS  Google Scholar 

  4. S.A. Impey, D.J. Stephenson, and J.R. Nicholls: Mater. Sci. Technol., 1988, vol. 4, pp. 1126–32.

    Article  CAS  Google Scholar 

  5. X. Cao and J. Campbell: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1409–20.

    Article  CAS  Google Scholar 

  6. Campbell J (2015) Complete Casting Handbook. Elsevier, Amsterdam

    Google Scholar 

  7. L. Liu and F.H. Samuel: J. Mater. Sci., 1998, vol. 33, pp. 2269–81.

    Article  CAS  Google Scholar 

  8. D. Dışpınar and J. Campbell: J. Inst. Cast Met. Eng., 2004, vol. 178, pp. 78–81.

    Google Scholar 

  9. D. Dışpınar and J. Campbell: J. Mater. Process. Technol., 2007, vol. 182, pp. 405–10.

    Article  Google Scholar 

  10. X. Dai, X. Yang, J. Campbell, and J. Wood: Mater. Sci. Eng. A, 2003, vol. 2, pp. 315–25.

    Article  Google Scholar 

  11. F.H. Samuel, H. Liu, and A.M. Samuel: Metall. Trans. A, 1993, vol. 24A, pp. 1631–45.

    Article  CAS  Google Scholar 

  12. C.H. Caceres and B.I. Selling: Mater. Sci. Eng. A, 1996, 220, 109–16.

    Article  Google Scholar 

  13. C. Nyahumwa, N.R. Green, and J. Campbell: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 349–58.

    Article  CAS  Google Scholar 

  14. J. Campbell: Mater. Sci. Technol., 2006, vol. 22, pp. 127–45.

    Article  CAS  Google Scholar 

  15. D.N. Miller, L. Lu, and A.K. Dahle: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 873–78.

    Article  CAS  Google Scholar 

  16. R. Cuesta, A. Delgado, A. Maroto, and D. Mozo: J. Mater., 2006, 58, 62–65.

    CAS  Google Scholar 

  17. N.W. Lai, W.D. Griffiths, and J. Campbell: Modeling of Casting, Welding, and Advanced Solidification Processes X, 2003.

  18. C. Reilly, N.R. Green, and M.R. Jolly: Appl. Math. Model., 2013, vol. 37, pp. 611–28.

    Article  Google Scholar 

  19. C.W. Hirt: Flow Sci. Tech. Note, 2004, p. 187.

  20. 20. C. Reilly, N.R. Green, M.R. Jolly, and J.C. Gebelin: Appl. Math. Model., 2013, vol. 37, pp. 8451–66.

    Article  Google Scholar 

  21. M. Prakash, P. Cleary, and J. Grandfield: J. Mater. Process. Technol., 2009, 209, 3396–3407.

    Article  CAS  Google Scholar 

  22. P.W. Cleary: Appl. Math. Model., 2010, vol. 34, pp. 3189–3201.

    Article  Google Scholar 

  23. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: AFS Cast Met. Res. J. 1981; 6:16–22

    Google Scholar 

  24. L. Cao, F. Sun, T. Chen, Y. Tang, and D. Liao: Int. J. Heat Mass Transf., 2018, vol. 119, pp. 614–23.

    Article  CAS  Google Scholar 

  25. C. Gu, Y. Lu, C.D. Ridgeway, E. Cinkilic, and A.A. Luo: Sci. Rep. 9:1-12 (2019)

    Article  Google Scholar 

  26. 26. C. Gu, C.D. Ridgeway, E. Cinkilic, Y. Lu, and A.A. Luo: J. Mater. Sci. Technol., 2020, vol. 49, pp. 91–105.

    Article  Google Scholar 

  27. C.D. Ridgeway, K. Ripplinger, D. Detwiler, and A.A. Luo: AFS Trans. 128:108929 (2020)

    Google Scholar 

Download references

Acknowledgments

The authors thank Honda Engineering of America and Honda R&D Americas for continued financial support and technical contributions. The authors are thankful to the members of the Lightweight Materials and Manufacturing Research Lab, The Ohio State University (OSU), for discussions and design assistance. Finally, the authors thank Pete Gosser, OSU, for assistance in machining test samples and Paul Jewell for assistance in completing the CT scans

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 1, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridgeway, C.D., Ripplinger, K., Detwiler, D. et al. A New Model for Predicting Oxide-Related Defects in Aluminum Castings. Metall Mater Trans B 51, 1989–2002 (2020). https://doi.org/10.1007/s11663-020-01918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01918-5

Navigation