Skip to main content
Log in

Analysis of Splitting and Martensitic Transformation of AlNi Intermetallic Obtained by Transient Liquid Phase Bonding

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study investigates the characteristics of the AlNi intermetallic formed in a Ni/Al/Ni couple obtained by the Transient Liquid Phase Bonding (TLPB) process. The crystal structure and orientation of the AlNi intermetallic phase were evaluated through SEM-EDS EBSD and its mechanical properties were analyzed by means of instrumented hardness. The results showed that AlNi intermetallic splits into two layers, with different Al content and the same crystal structure and orientation. EBSD mapping revealed that there is no grain boundary along the split line, suggesting that a chemical partition takes place without the need of nucleation, like in a spinodal decomposition. A martensitic layer formed at the Ni-rich AlNi split side was identified by indexing the measured Kikuchi patterns. Instrumented hardness showed that the mechanical properties of AlNi phase change markedly depending on its chemical composition. These results provide experimental data that contribute to the understanding of the solid-state transformations occurring in the central portion of the Al-Ni phase diagram under isothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. 3

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.R. Davis: ASM Specialty Handbook: Heat-Resistant Materials, ASM International, Materials Park, OH, 1997, pp. 389–414.

  2. R.D. Noebe, R.R. Bowman, M.V. Nathal, Int. Mater. Rev. 38, 193–232 (1993)

    Article  CAS  Google Scholar 

  3. G.A. López, S. Sommadossi, P. Zieba, W. Gust, E.J. Mittemeijer, Mater. Chem. Phys. 78, 459–463 (2003)

    Article  Google Scholar 

  4. K. Bochenek, M. Basista, Prog. Aeronaut. Sci. 79, 136–146 (2015)

    Article  Google Scholar 

  5. A. Paul, Diffus. Found. 13, 167–195 (2017)

    Article  Google Scholar 

  6. D.B. Miracle, Acta Metall. Mater. 41, 649–684 (1993)

    Article  CAS  Google Scholar 

  7. J.R. Nicholls, MRS Bull. 28, 659–670 (2003)

    Article  CAS  Google Scholar 

  8. K.S. Mohammed, H.T. Naeem, S.N. Iskak, Phys. Met. Metallogr. 117, 795–804 (2016)

    Article  CAS  Google Scholar 

  9. M. Ellner, S. Kek, B. Predel, J. Less Common Met. 154, 207–215 (1989)

    Article  CAS  Google Scholar 

  10. R.J. Tarento, G. Blaise, Acta Metall. 37, 2305–2312 (1989)

    Article  CAS  Google Scholar 

  11. R. Moskovic, J. Mater. Sci. 12, 1895–1902 (1977)

    Article  CAS  Google Scholar 

  12. S. Tumminello, S. Sommadossi, Defect Diffus. Forum 323, 465–470 (2012)

    Article  Google Scholar 

  13. A. Urrutia, S. Tumminello, S.F. Aricó, S. Sommadossi, CALPHAD Comput. Coupling Phase Diagrams Thermochem. 44, 108–113 (2014)

    Article  CAS  Google Scholar 

  14. H. Sieber, J.S. Park, J. Weissmüller, J.H. Perepezko, Acta Mater. 49, 1139–1151 (2001)

    Article  CAS  Google Scholar 

  15. R. Moskovic, J. Mater. Sci. 12, 489–493 (1977)

    Article  CAS  Google Scholar 

  16. Y.K. Au, C.M. Wayman, Scr. Metall. 6, 1209–1214 (1972)

    Article  CAS  Google Scholar 

  17. S. Chakravorty, C.M. Wayman, Metall. Trans. A 7, 555–568 (1976)

    Article  Google Scholar 

  18. S. Chakravorty, C.M. Wayman, Metall. Trans. A 7, 569–582 (1976)

    Article  Google Scholar 

  19. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. (1980–2015). 56, 1078–1113 (2014)

    Article  Google Scholar 

  20. H. Wang, J. Han, S. Du, D.O. Northwood, Metall. Trans. A 38, 409–419 (2007)

    Article  Google Scholar 

  21. K. Brunelli, L. Peruzzo, M. Dabala, Mater. Chem. Phys. 149, 350–358 (2015)

    Article  Google Scholar 

  22. H.Y. Kim, D.S. Chung, S.H. Hong, Mater. Sci. Eng. A 396, 376–384 (2005)

    Article  Google Scholar 

  23. M. Swain, S. Singh, S. Basu, M. Gupta, J. Alloys Compd. 576, 257–261 (2013)

    Article  CAS  Google Scholar 

  24. M. Konieczny, Mater. Charact. 70, 117–124 (2012)

    Article  CAS  Google Scholar 

  25. A. Paul, A.A. Kodentsov, F.J.J. Van Loo, Acta Mater. 52, 4041–4048 (2004)

    Article  CAS  Google Scholar 

  26. A. Kodentsov, Diffus. Found 13, 56–97 (2017)

    Article  CAS  Google Scholar 

  27. G.O. Cook, C.D. Sorensen, J. Mater. Sci. 46, 5305–5323 (2011)

    Article  CAS  Google Scholar 

  28. G.A. Lopez, S. Sommadossi, W. Gust, E.J. Mittemeijer, P. Zieba, Interface Sci. 10, 13–19 (2002)

    Article  CAS  Google Scholar 

  29. I. Kwiecien, P. Bobrowski, A. Wierzbicka-Miernik, L. Litynska-Dobrzynska, J. Wojewoda-Budka, Nanomaterials 9, 134 (2019)

    Article  CAS  Google Scholar 

  30. A. Urrutia, S. Tumminello, D.G. Lamas, S. Sommadossi, Procedia Mater. Sci. 8, 1150–1159 (2015)

    Article  CAS  Google Scholar 

  31. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  32. D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC, Boca Raton, FL, 2009), pp. 302–312

    Google Scholar 

  33. T.L. Li, Y.F. Gao, H. Bei, E.P. George, J. Mech. Phys. Solids 59, 1147–1162 (2001)

    Article  Google Scholar 

  34. Y.A. Chang, L.M. Pike, C.T. Liu, A.R. Bilbrey, D.S. Stone, Intermetallics 1, 107–115 (1993)

    Article  CAS  Google Scholar 

  35. N. Rusović, H. Warlimont, Phys. Status Solidi A 53, 283–288 (1979)

    Article  Google Scholar 

  36. D. Shi, B. Wen, R. Melnik, S. Yao, T. Li, J. Solid State Chem. 182, 2664–2669 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to express their gratitude to CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and to Christian Doppler Forschungsgesellschaft, fostered in the frame of CD-Laboratory for Design of High-Performance Alloys by Thermomechanical Processing, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Poliserpi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 19, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poliserpi, M., Buzolin, R., Boeri, R. et al. Analysis of Splitting and Martensitic Transformation of AlNi Intermetallic Obtained by Transient Liquid Phase Bonding. Metall Mater Trans B 51, 916–924 (2020). https://doi.org/10.1007/s11663-020-01832-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01832-w

Navigation