Skip to main content
Log in

Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Direct reduction of iron ore pellets using hydrogen gas has the potential to significantly reduce CO2 emissions from the ironmaking process. In this work, green pellets of titanomagnetite ironsand from New Zealand were oxidatively sintered to form titanohematite. These sintered pellets were then reduced by H2 gas at temperatures ≥ 1043 K, and a maximum reduction degree of ~ 97 pct was achieved. Fully reduced pellets contained metallic Fe as the main product phase, but several different (Fe, Ti) oxides were also present as minor inclusions. The phase distribution of these oxides depended on the reduction temperature. With increasing temperature, the relative proportion of pseudobrookite in the final product increased, while the proportion of residual ilmenite and rutile decreased. The reduction kinetics were found to be well described by a pellet-scale single-interface shrinking core model, for reduction degrees up to 90 pct. At temperatures above 1143 K, the rate-limiting step was found to be solely an interfacial chemical reaction process, with a calculated apparent activation energy of 31.3 kJ/mol. For pellet sizes from 5.5 to 8.5 mm, the reaction rate was observed to increase linearly with decreasing pellet diameter, and this linear correlation extrapolated to intercept the axis at a pellet diameter of 2.5 mm. This is interpreted as the minimum length required for a shrinking core interface to develop within the pellet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1 H. Sun, A.A. Adetoro, Z. Wang, F. Pan, and L. Li: ISIJ Int., 2016, vol. 56, pp. 936–43.

    Article  CAS  Google Scholar 

  2. 2 R.L. Brathwaite, M.F. Gazley, and A.B. Christie: J. Geochemical Explor., 2017, vol. 178, pp. 23–34.

    Article  CAS  Google Scholar 

  3. 3 D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang: Miner. Eng., 2011, vol. 24, pp. 864–9.

    Article  CAS  Google Scholar 

  4. 4 Y. Li, H. Guo, and L. Li: Chinese J. Eng., 2011, vol. 40, pp. 154–57.

    Google Scholar 

  5. A.A. Adetoro, H. Sun, S. He, Q. Zhu, and H. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 846–57.

    Article  Google Scholar 

  6. Iron and steel – Te Ara Encyclopedia of New Zealand, https://teara.govt.nz/en/iron-and-steel/page-2. Accessed 28 June 2017.

  7. K.-H. Tacke and R. Steffen: 1st Chinese-German Seminar on Fundamentals of Iron and Steelmaking, Beijing, 2004.

  8. 8 V. Vogl, M. Åhman, and L.J. Nilsson: J. Clean. Prod., 2018, vol. 203, pp. 736–45.

    Article  CAS  Google Scholar 

  9. 9 A. Ranzani da Costa, D. Wagner, and F. Patisson: J. Clean. Prod., 2013, vol. 46(May), pp. 27–35.

    Article  CAS  Google Scholar 

  10. S.W. Prabowo, R.J. Longbottom, B.J. Monaghan, D. del Puerto, M.J. Ryan, and C.W. Bumby: Metall. Mater. Trans. B, 2019, 50: 1729.

    Article  Google Scholar 

  11. 11 M.E. Choi and H.Y. Sohn: Ironmak. Steelmak., 2010, vol. 37, pp. 81–8.

    Article  CAS  Google Scholar 

  12. 12 E. Park and O. Ostrovski: ISIJ Int., 2003, vol. 43, pp. 1316–25.

    Article  CAS  Google Scholar 

  13. R.J. Longbottom, O. Ostrovski, J. Zhang, and D. Young: Metall. Mater. Trans. B, 2007, vol. 38, pp. 175–84.

    Article  CAS  Google Scholar 

  14. 14 Y.L. Sui, Y.F. Guo, T. Jiang, X.L. Xie, S. Wang, and F.Q. Zheng: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 10–7.

    Article  Google Scholar 

  15. 15 E. Park and O. Ostrovski: Isij Int., 2004, vol. 44, pp. 74–81.

    Article  CAS  Google Scholar 

  16. 16 E. Park and O. Ostrovski: ISIJ Int., 2004, vol. 44, pp. 999–1005.

    Article  CAS  Google Scholar 

  17. 17 J. Dang, G.H. Zhang, X.J. Hu, and K.C. Chou: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 1134–40.

    Article  CAS  Google Scholar 

  18. 18 X.F. She, H.Y. Sun, X.J. Dong, Q.G. Xue, and J.S. Wang: J. Min. Metall. Sect. B Metall., 2013, vol. 49, pp. 263–70.

    Article  CAS  Google Scholar 

  19. 19 R.J. Longbottom, O. Ostrovski, and E. Park: ISIJ Int., 2006, vol. 46, pp. 641–6.

    Article  CAS  Google Scholar 

  20. 20 Z. Wang, J. Zhang, K. Jiao, Z. Liu, and M. Barati: J. Alloys Compd., 2017, vol. 729, pp. 874–83.

    Article  CAS  Google Scholar 

  21. 21 G.D McAdam, R.E.A Dall, T. Marshall: NEW Zeal. J. Sci., 1969, vol. 12, pp. 649–68.

    CAS  Google Scholar 

  22. J. Tang, M.S. Chu, Z.W. Ying, F. Li, C. Feng and Z.G. Liu: Metals (Basel)., 2017, vol. 7: 153.

    Article  Google Scholar 

  23. 23 Y.D. Wang, X.N. Hua, C.C. Zhao, T.T. Fu, W. Li, and W. Wang: Int. J. Hydrogen Energy, 2017, vol. 42, pp. 5667–75.

    Article  CAS  Google Scholar 

  24. 24 B. Hou, H. Zhang, H. Li, and Q. Zhu: Chinese J. Chem. Eng., 2015, vol. 23, pp. 974–80.

    Article  CAS  Google Scholar 

  25. 25 C. Li, H. Lin, Y. Chen: Thermochim. Acta, 2003, vol. 400, pp. 61–7.

    Article  Google Scholar 

  26. 26 A. Bonalde, A. Henriquez, and M. Manrique: ISIJ Int., 2005, vol. 45, pp. 1255–60.

    Article  CAS  Google Scholar 

  27. M. Kazemi, M.S. Pour, and D. Sichen: Metall. Mater. Trans. B 48: 1114 (2017).

    Article  Google Scholar 

  28. 28 H. Zuo, C. Wang, J. Dong, K. Jiao, and R. Xu: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 688–96.

    Article  CAS  Google Scholar 

  29. B. Kennedy, N.H. Daniels, T. Marshall: N. Z. J. Sci., 1969, vol. 12, pp. 701–20.

    Google Scholar 

  30. A. Zhang, R.J. Longbottom, M. Nusheh, C.W. Bumby, and B.J. Monaghan: Proc. 8th International Congress on science and Technology of Ironmaking, Art. No. 282, Vienna, 2018.

  31. Levenspiel O (1999) Chemical Reaction Engineering. Wiley, New York

    Google Scholar 

  32. 32 P. den Hoed and A. Luckos: Oil Gas Sci. Technol., 2011, vol. 66, pp. 249–63

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funding received from the Endeavour Fund of the New Zealand Ministry of Business Innovation and Employment (Grant No. RTVU1404)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris W. Bumby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Monaghan, B.J., Longbottom, R.J. et al. Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K. Metall Mater Trans B 51, 492–504 (2020). https://doi.org/10.1007/s11663-020-01790-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01790-3

Navigation