Skip to main content
Log in

Engineering Nucleation Kinetics of Graphite Nodules in Inoculated Cast Iron for Reducing Porosity

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Inoculation of cast iron with spherical graphite (SGI) controls nucleation kinetics of graphite nodules and is used for improving casting performance and eliminating solidification micro-porosity. In this study, thermodynamic simulations were used to design inoculants. Thermal and chemical stability of different potential heterogeneous nuclei formed in the melt above the liquidus temperature and in the mushy zone during solidification was predicted. Several inoculation treatments of SGI were performed in laboratory heats. An automated SEM/EDX analysis was applied to examine the graphite nodule size distribution and the family of the non-metallic inclusions in the experimental castings. The data were used to reconstruct a relative graphite nodule nucleation rate in the castings. It was shown that the graphite nodule nucleation kinetics in the castings were significantly different from those predicted by classical nucleation models. In inoculated SGI, the observed bi-modal distribution of graphite nodules was related to a continuous nucleation that occurred towards the end of solidification. The origin of the continuous nucleation and the possibility of engineering graphite nodules nucleation kinetics to control SGI casting soundness by inoculation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Turnbull: J Appl Phys, 1950, vol. 21, pp.1022-1028.

    Article  Google Scholar 

  2. R. Hashimoto, Y. Shibuta, T. Suzuki: ISIJ Int, 2011, vol. 51, pp.1664-1667.

    Article  Google Scholar 

  3. E. Fras, H. Lopez, M. Kawalec, M. Gorny: Metals, 2015, 5, pp.256-288.

    Article  Google Scholar 

  4. M. Chisamera, I. Riposa, S. Stan, and M. Barstow: AFS Proceedings, 2012, Paper 12-071.

  5. K. M. Pedersen and N. S. Tiedjie: Mater Charact, 2008, vol. 59, pp.1111-1121.

    Article  Google Scholar 

  6. S. Lekakh, J. Qing, V. Richards, and K. Peaslee: AFS Transactions, 2013, paper13-1321, pp.1–8.

  7. S. Lekakh: ISIJ Int, 2016, vol. 56, p.812-819.

    Article  Google Scholar 

  8. Y. Yin, Z. Tu, J. Zhou, D. Zhang, M. Wang, Z. Guo, C. Liu, X. Chen: Metall Trans A., 2017, vol.48, pp.3794-3803.

    Article  Google Scholar 

  9. G. Alonso, D.M. Stefanescu, R. Larranaga, R. Suarez, and E. De la Fuente: AFS Proceedings, 2017, Paper 17-031.

  10. S. Lekakh, and N. Medvedeva: Comp Mater Sci, 2015, vol. 106, pp.149-154.

    Article  Google Scholar 

  11. K. Yamane, H. Yasuda, A. Sugiyama, T. Nadira, M. Yoshita, K. Morishita, K. Uesugi, T. Takeuchi, and Y. Suzuki: Metall Trans, A, 2015, vol. 46, pp. 4937-4946.

    Article  Google Scholar 

  12. A. Dioszegi, I. Svensson: Int J Cast Met Res, 2005, vol. 18, pp. 41-46.

    Article  Google Scholar 

  13. S. Lekakh, B. Hrebec: Int J Metal Cast, 2016, vol. 10. pp. 389-400.

    Article  Google Scholar 

  14. P. Kainzinger, C. Guster, M. Severing, and A. Wolf: Proceedings 13th Inter. Conference on Fracture, Beijing, China, 2013, pp. 1–9.

  15. G. Alonso, D. M. Stefanescu, R. Suarez, A. Loizaga, and G. G. Zarrabeitia: Int J Metal Cast, 2014, vol. 27, pp.87–100.

    Article  Google Scholar 

  16. C.A. Bhaskaran and D.J. Wirth: AFS Transactions, 2002, Paper 02-003.

  17. P. Larranaga, J.M. Gutierres, A. Loizaga, J. Sertucha, and R. Suarez: AFS Transactions, 2008, Paper 08-008.

  18. D.M. Stefanescu, M. Morgan, S. Boonmee, and W.L. Guesser: AFS Proceedings, 2012, Paper 12-045.

  19. A. Knuutinen, K. Nogita, S. McDonald, A. Dohle: J Light Met, 2001, vol.1, pp.241-249.

    Article  Google Scholar 

  20. T. Skaland: Int J Cast Met Res, 2003, vol. 16, pp.105-111.

    Article  Google Scholar 

  21. K. Soivio, L. Elmquist: Int J Cast Met Res, 2013, vol. 26, pp.220-227.

    Article  Google Scholar 

  22. Factsage software, www.factsage.com.

  23. S. Lekakh, J. Ge, V. Richards, R. O’Malley, J. Terbush: Metall Trans B., 2017, vol. 48B, pp. 406-419.

    Article  Google Scholar 

  24. SE-FIT Software, Portland State University, www.se-fit.com.

  25. T. E. Quested, A. L. Greer: Acta Materialia, 2005, vol. 53, pp.2683-2692.

    Article  Google Scholar 

  26. S. Lekakh, V. Richards, K. Peaslee: Int J Metal Cast, 2009, vol. 4, p.25-37.

    Article  Google Scholar 

  27. M. Harris, O. Adaba, S. Lekakh, R. O’Malley, and V. Richards: AISTech Proceedings, 2015, pp. 3315–25.

Download references

Acknowledgments

The author thank Dr. David Robertson for discussion and suggestions, Ph.D. student Obinna Adaba and undergrad students Michael Khayat for help with experimental heat and sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon N. Lekakh.

Additional information

Manuscript submitted September 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekakh, S.N. Engineering Nucleation Kinetics of Graphite Nodules in Inoculated Cast Iron for Reducing Porosity. Metall Mater Trans B 50, 890–902 (2019). https://doi.org/10.1007/s11663-018-1488-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1488-0

Navigation