Skip to main content
Log in

Investigation of the Carbochlorination Mechanism of Mullite from Fly Ash

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the reaction mechanism of mullite carbochlorination was investigated to determine its potential in the use of high-alumina fly ash. Thermodynamic analysis of carbochlorination reduction was conducted to determine the two-stage mechanism of carbochlorination of the system Al6Si2O13-C-Cl2. The calculation results agreed well with the experimental results. The maximum chlorination rates of Al2O3, SiO2, CaO, and TiO2 were 84.80, 55.96, 75.78, and 76.61 pct, respectively, under the optimum conditions: carbon:alumina molar ratio 3:1, temperature 1000 °C, pellet diameter 8 mm, and an average Cl2 flow 0.3544 L/min. X-ray diffraction analysis showed that the tailings from carbochlorination for 30 minutes mainly consisted of Al4.59Si1.41O9.7, Al2O3, and SiO2. A new SiO2 phase appeared in the tailings during carbochlorination. The morphology of the tailings after pelletizing carbochlorination was investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results showed that under the action of carbon and chlorine, the original stable structure of mullite in the fly ash was destroyed. These findings provide useful information for facilitating the development of a pelletizing carbochlorination method for efficient and clean use of fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1.Z. Wang, S. Ma, Z. Tang, X. Wang and S. Zheng: J. Hazard Mater. 2016, vol. 308, pp. 253–263.

    Article  CAS  Google Scholar 

  2. [2]. H.Q. Li, J.B. Hui, C.Y. Wang, W.J. Bao, and Z.H. Sun: Hydrometallurgy, 2014, vol. 147–148(8m), pp. 183–187.

    Article  Google Scholar 

  3. [3]. J.M. Sun and P. Chen: Adv. Mater. Res. 2013, vol. 652–654, pp. 2570–2575.

    Article  Google Scholar 

  4. [4]. Q.C. Yang, S.H. Ma and S.L. Zheng: Trans. Nonferrous Met. Soc. China., 2014, vol. 24(4), pp. 1187–1195.

    Article  CAS  Google Scholar 

  5. G.Z. Lv, T.A. Zhang, W.G. Zhang, X.F. Zhu, and Y. Liu: Light Metals 2017, Springer, 2017, pp. 115–20.

  6. [6]. T.A. Zhang, C.Z. Zheng, G..Z. Lv and J.M. Sun: J. Northeast. Univ., 2014, vol. 35(10), pp. 1456–1459.

    CAS  Google Scholar 

  7. [7]. R. Li, T. Zhang, J. Li, X. Li and N. Wu: Electric Power, 2013, vol. 46(2), pp. 40–45.

    Google Scholar 

  8. 8..G. Zhu, H. Li, R. Lin, S. Li, X. Hou, and Q. Tang: Hydrometallurgy, 2016, vol. 165, pp. 282–289.

    Article  CAS  Google Scholar 

  9. T.A. Zhang, G.Z. Lv, Z.H. Duo, X.L. Nan, D. Song, Y. Li, and J.C. He: Light Metals 2012. Springer, 2012, vol. 510(1), pp. 189–94.

  10. 10.J. Ding, S.H. Ma, S.L. Zheng, Y. Zhang, Z.L. Xie, S. Shen, and Z.K. Liu: Hydrometallurgy, 2016, vol. 161, pp. 58–64.

    Article  CAS  Google Scholar 

  11. [11]. L.P. Niu, P.Y. Ni, T.A. Zhang, G.Z. Lv, A.P. Zhou and X.B. Liang: Rare Metals, 2014, vol. 33(4), pp. 485–492.

    Article  CAS  Google Scholar 

  12. [12]. J. Li, Y. Li, Y. Gao, Y. Zhang, Z. Chen: Int. J. Miner. Process., 2016, vol. 148, pp. 23–31.

    Article  CAS  Google Scholar 

  13. [13]. M.H. Jazini, S.M. Ghoreishi and A.A. Dadkhah: Metall. Mater. Trans. B, 2010, vol. 41(1), pp. 248–254.

    Article  CAS  Google Scholar 

  14. [14]. J.A Gamboa, A.E Bohé, D.M. Pasquevich: Thermochim. Acta, 1999, vol. 334(1-2), pp. 131–139.

    Article  Google Scholar 

  15. [15]. J.P. Gaviría and A.E. Bohé: Thermochim. Acta, 2010, vol. 509(1-2), pp. 100–110.

    Article  Google Scholar 

  16. [16]. I. Barin and W. Schuler: Metall. Mater. Trans. B, 1980, vol. 11(2), pp. 199–207.

    Article  Google Scholar 

  17. [17]. D.M. Pasquevich, J. A. Gamboa and A. Caneiro: Thermochim. Acta, 1992, vol. 209(92), pp. 209–222

    Article  CAS  Google Scholar 

  18. [18]. N.V. Manukyan and V.H. Martirosyan: Cheminform., 2003, vol. 142(1), pp. 145–151.

    CAS  Google Scholar 

  19. [19]. L.Y. Sun, K. Luo, J.R. Fan, and H.L. Lu: Fuel, 2017, vol. 199, pp. 22–27

    Article  CAS  Google Scholar 

  20. [20]. G.H. Bai, Y.H. Qiao, B. Shen, S.L. Chen: Fuel Process. Technol., 2011, vol. 92(6), pp. 1213–1219.

    Article  CAS  Google Scholar 

  21. [21]. F.J. Pomiro, G.G. Fouga, J.P. Gaviría, and A.E. Bohé: Metall. Mater. Trans. B, 2015, vol. 46(1), pp. 304–315.

    Article  Google Scholar 

  22. T.A. Zhang, Z.H. Dou, Y. Liu, G.Z. Lv, and L. Wang: CN Patent, 2017, CN107128957A.

  23. 23.N. Kanari, D. Mishra, J. Mochón, and L.F.Verdeja: Rev. Metal. Madrid., 2010, vol. 46(1), pp. 22–36.

    Article  CAS  Google Scholar 

  24. 24.R. Naghizadeh, F. Golestani-fard and H.R. Rezaie: Mater. Charact., 2011, vol. 62(5), pp. 540–544.

    Article  CAS  Google Scholar 

  25. [25]. B.G.M.V. Wachem, J.C. Schouten and C.M.V.D. Bleek: Aiche J., 2001, vol. 47(6), pp. 1292–1302.

    Article  Google Scholar 

  26. [26]. M. Wen, T.A. Zhang and Z.H. Dou: J. Northeast. Univ., 2016, vol. 37(7), pp. 960–963.

    CAS  Google Scholar 

  27. [27]. A.P. Shaw, J.S. Brusnahan, J.C. Poret and L.A. Morris: Acs. Sustain. Chem. Eng., 2016, vol. 4, pp. 2309–2315.

    Article  CAS  Google Scholar 

  28. [28]. J. Hunt, A. Ferrari, A. Lita, M. Crosswhite and B. Ashley: J. Phys. Chem. C., 2015, vol. 117(51), pp. 26871–26880.

    Article  Google Scholar 

  29. [29]. M.W. Ojeda, J.B. Rivarola, and O.D. Quiroga: Miner. Eng., 2002, vol. 15(8), pp. 585–591.

    Article  CAS  Google Scholar 

  30. [30]. D.M. Pasquevich, J.A. Gamboa, and A. Caneiro: Thermochim. Acta., 1992, vol. 209(92), pp. 209–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support to this project is provided by the National Natural Science Foundation of China (U1710257, U1702253, U1202274, and 51374064), Fundamental Research Funds for the Central Universities of China (N140203005, N140204015), Science and Technology Research Projects of Liaoning Education Department (L2014096), and State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-an Zhang.

Additional information

Manuscript submitted November 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Ta., Lv, Gz. et al. Investigation of the Carbochlorination Mechanism of Mullite from Fly Ash. Metall Mater Trans B 49, 2835–2845 (2018). https://doi.org/10.1007/s11663-018-1330-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1330-8

Keywords

Navigation