Skip to main content

Advertisement

Log in

Data-Driven Mathematical Modeling of the Effect of Particle Size Distribution on the Transitory Reaction Kinetics of Hot Metal Desulfurization

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The aim of this work was to develop a prediction model for hot metal desulfurization. More specifically, the study aimed at finding a set of explanatory variables that are mandatory in prediction of the kinetics of the lime-based transitory desulfurization reaction and evolution of the sulfur content in the hot metal. The prediction models were built through multivariable analysis of process data and phenomena-based simulations. The model parameters for the suggested model types are identified by solving multivariable least-squares cost functions with suitable solution strategies. One conclusion we arrived at was that in order to accurately predict the rate of desulfurization, it is necessary to know the particle size distribution of the desulfurization reagent. It was also observed that a genetic algorithm can be successfully applied in numerical parameter identification of the proposed model type. It was found that even a very simplistic parameterized expression for the first-order rate constant provides more accurate prediction for the end content of sulfur compared to more complex models, if the data set applied for the modeling contains the adequate information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Area (m2)

b i :

Regression coefficient for a variable i (-)

C d :

Drag coefficient (-)

d :

Diameter (µm)

d ka :

Average particle size by means of mass transfer (µm)

d 32 :

Sauter mean diameter (µm)

d A :

Area-based mean diameter (µm)

d mean :

Volume-based mean diameter (µm)

g:

Gas (-)

k tot :

Rate constant of the transitory reaction (1/s)

M :

Molar mass (g/mol)

\( \dot{m} \) :

Reagent feed rate (kg/s)

N :

Normal distribution (-)

p :

Particle (-)

Q :

Carrier gas flow rate (m3/s)

R :

Weight fraction of particles (-)

R :

Universal gas constant 8.3145 J/(K mol)

R 2 :

Squared Pearson correlation coefficient (-)

t :

Time (s)

t res :

Residence time (s)

u t :

Terminal velocity (m/s)

V :

Volume (m3)

x i :

Input variable i (-)

y i :

Volume fraction (-)

y :

Output variable (-)

\( \hat{y} \) :

Predicted output variable (-)

w :

Mass fraction (-)

X :

Data-matrix (-)

β :

Mass transfer coefficient (m/s)

ρ :

Density (kg/m3)

Ω:

Fraction of contacted particles (-)

θ :

Contact angle

[ ]:

Species dissolved in hot metal (-)

( ):

Species in slag phase (-)

{ }:

Species in gas phase (-)

〈 〉:

Solid species (-)

MAE:

Mean absolute error of prediction (-)

SOS:

Sum of squared errors (-)

References

  1. D. Lindström and D. Sichen: Steel Res. Int., 2014, 86, pp. 73–83.

    Article  Google Scholar 

  2. J. Coudure and G. Irons: ISIJ Int., 1994, 34, pp. 155–163.

    Article  CAS  Google Scholar 

  3. A. F. Shevchenko, A. G. Kiyashko and A. N. Malkov: Steel USSR, 1984, 14, pp. 116–117.

    Google Scholar 

  4. D. Lindström and D. Sichen: Metall. Trans. B, 2014, 46, pp. 83-92.

    Google Scholar 

  5. D. Vinoo, D. Mazumdar and S. Gupta: Ironmak. Steelmak., 2007, 34, pp. 471–476.

    Article  CAS  Google Scholar 

  6. R. Rastogi, K. Deb, B. Deo and R. Boom:Steel Res., 1994, 65, pp. 472–478.

    Article  CAS  Google Scholar 

  7. B. Deo, A. Datta, B. Kukreja, R. Rastogi and K. Deb:Steel Res., 1994, 65, pp. 528–533.

    Article  CAS  Google Scholar 

  8. A. Datta, M. Hareesh, P. Kalra, B. Deo and R. Boom: Steel Res., 1994, 11, pp. 466-471.

    Article  Google Scholar 

  9. J. Lee and K. Morita: ISIJ Int. 2004, vol. 44, pp. 235–242.

    Article  CAS  Google Scholar 

  10. F. Oeters: Metallurgy of steelmaking, Verlag Stahlheisen, Düsseldorf, Germany, 1994.

    Google Scholar 

  11. W. Ma, H. Li, Y. Cui, B. Chen, G. Liue and J. Ji: ISIJ Int. 2017, 57, pp. 214–219.

    Article  CAS  Google Scholar 

  12. F. Harrell: Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression and Survival Analysis, Springer, New York, NY, USA, 2001.

    Book  Google Scholar 

  13. U. Pal and B. Patil: Ironmak. Steelmak. 1986, 13, pp. 294–300.

    CAS  Google Scholar 

  14. Y. Jin, X. Bi, S. Yu: Acta Metall. Sin., 2006, vol. 16, pp. 258–264.

    Article  Google Scholar 

  15. L. Chiang, G. Irons, W. Lu and I. Cameron: Iron Steelmak., 1990, 17, pp. 35–52.

    CAS  Google Scholar 

  16. F. Oeters, P. Strohmenger and W. Pluschkell: Arch. Eisenhüttenwes. 1979, 44, pp. 727–733.

    Article  Google Scholar 

  17. G. Irons: Ironmak. Steelmak., 1989,16, pp. 28–36.

    CAS  Google Scholar 

  18. G. Irons: ISS Transactions, 1984, 5, pp. 33–45.

    CAS  Google Scholar 

  19. M. Nakano and K. Ito: ISIJ Int. 2016, 56, pp. 1537–1542.

    Article  CAS  Google Scholar 

  20. Y. Zhao and G. Irons: Ironmak. Steelmak. 1994, 21, pp. 303–308.

    CAS  Google Scholar 

  21. D. Lindström, P. Nortier and D. Sichen: Steel Res. Int. 2014, 86, pp. 76–88.

    Article  Google Scholar 

  22. H.-M. Delhey, E. Schürmann, W. Fix and L. Fiege: Stahl Eisen, 1989, 109, pp. 1207–1214.

    CAS  Google Scholar 

  23. R. Clift, J. Grace and M. Weber: Bubbles, Drops and Particles, Academic Press, New York, USA, 1978.

    Google Scholar 

  24. T. Engh, K. Larsen and K. Venås: Ironmak. Steelmak.,1979, 6, pp. 268–273.

    CAS  Google Scholar 

  25. M. Miyata and Y. Higuchi: ISIJ Int., 2017, 57, pp. 1742–1750.

    Article  CAS  Google Scholar 

  26. Y. Zhao: Doctoral thesis, McMaster University, Hamilton, Ontario, Canada, 1992.

  27. S. Yousuf, M. Mohamed and S. Maitra: J. Eng. Sci. Technol., 2012, 7, pp. 1–10.

    Google Scholar 

  28. A. Sen and M. Srivastava, Regression Analysis: Theory, Methods, and Applications, Springer, New York, NY, USA, 1990.

    Google Scholar 

  29. S. Weisberg: Applied Linear Regression, John Wiley & Sons, New York, NY, USA 1985.

    Google Scholar 

  30. D. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston, MA, USA, 1989.

    Google Scholar 

  31. V. Rashtchi, E. Rahimpour and E. Rezapour: Electr. Eng., 2006, 88, pp. 417–422.

    Article  Google Scholar 

  32. H. Tang, X. Xing, W. Dai and Y. Xiao: J. Hydrodyn., 2010, 22, pp. 246–253.

    Article  Google Scholar 

  33. M. Jahromi and M. Ameli: Electr. Pow. Syst. Res., 2018, 158, pp. 82–91.

    Article  Google Scholar 

  34. L. Lai and J. Ma: IEEE Trans. Energy Convers., 1996, 11, pp. 523–529.

    Article  Google Scholar 

  35. L. Yao and W. Sethares: IEEE Trans. Signal Process., 1994, 42, pp. 927–935.

    Article  Google Scholar 

  36. A. Kumar and G. Roy: Metall. Mater. Trans. B, 2005, 36, pp. 901–904.

    Article  CAS  Google Scholar 

  37. M. Dub and R. Jalovecký: Proceedings of the 14th International Power Electronics and Motion Control Conference, 2010, pp. 9–11.

  38. B. Deo and V. Srivastava: Manuf. Processes, 2003, 18, pp. 401-408.

    Article  CAS  Google Scholar 

  39. T. Bäck and M. Schütz: Proceedings of the 9th International Symposium on Methodologies for Intelligent Systems, 1996, pp. 158–67.

  40. O. Roeva, S. Fidanova, and M. Paprzycki: Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, pp. 371–76.

  41. T. Chen, K. Tang, G. Chen and X. Yao: Theoretical Computer Science, 2012, 436, pp. 54-70.

    Article  Google Scholar 

  42. A. Gharahbagh and V. Abolghasemi: WASJ, 2008, 5, pp. 137–142.

    Google Scholar 

  43. T. Sattarpour, D. Nazarpour, S. Golshannavaz and P. Siano: J. Ambient Intell. Human. Comput., 2018, 9, pp. 105–122.

    Article  Google Scholar 

  44. J. Nelder and R. Mead: Comput. J., 1965, 7, pp. 308–313.

    Article  Google Scholar 

  45. H. Dong, H. Wang and S. Chu: J. S. Afr. Inst. Min. Metall., 2014, 114, pp. 489–495.

    Google Scholar 

  46. K. McInnon: SIAM J. Optim., 1998, 9, pp. 148–158.

    Article  Google Scholar 

  47. J. Lagarias, J. Reeds, M. Wright and P. Wright: SIAM J. Optim., 1998, 9, pp. 112–147.

    Article  Google Scholar 

  48. MathWorks: fminsearch: https://se.mathworks.com/help/matlab/ref/fminsearch.html. Accessed 5 February 2018.

  49. R. Picard and D. Cook: J. Am. Stat. Assoc., 1984, 79, pp. 575–583.

    Article  Google Scholar 

  50. N. Altman and M. Krzywinski: Nat. Methods, 2017, 14, pp. 213–214.

    Article  CAS  Google Scholar 

  51. N. Weiss: Elementary Statistics, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2007.

    Google Scholar 

  52. G. Sigworth and J. Elliott: Met. Sci., 1974, 8, pp. 298–310.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted within the Flexible and Adaptive Operations in Metal Production (FLEX) research program funded by Business Finland. The authors would like to thank Dr. Aki Sorsa for constructive comments on the manuscript. Also, the work of the analysis laboratory and specialized sampling group of SSAB Europe Oy in Raahe is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Vuolio.

Additional information

Manuscript submitted February 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuolio, T., Visuri, VV., Tuomikoski, S. et al. Data-Driven Mathematical Modeling of the Effect of Particle Size Distribution on the Transitory Reaction Kinetics of Hot Metal Desulfurization. Metall Mater Trans B 49, 2692–2708 (2018). https://doi.org/10.1007/s11663-018-1318-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1318-4

Keywords

Navigation