Skip to main content
Log in

Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-Transfer Equations in the Liquid–Solid Zone

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 21 September 2018

This article has been updated

Abstract

An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions (e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman’s solution are consistent in the low carbon range. A conventional numerical heat analysis (i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 21 September 2018

    Running footer on this article appeared incorrectly. It should read 644—VOLUME 49B, APRIL 2018.

References

  1. T. Kawawa, H. Sato, S. Miyahara, T. Koyano, and H.Nemoto: Tetsu-to-Hagane’, 1974, vol. 60, pp. 206-16.

    Article  CAS  Google Scholar 

  2. T. Kawawa and H. Tuchida: Tekko-no-Gyouko (Soidification of steel), Appendix 4, ed. By Solidification Comm., Joint Sc. on Iron and Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977.

  3. M. Hirai, K. Kanamaru, and H. Mori: Tekko-no-Gyouko (Soidification of steel), Appendix 4, ed. By Solidification Comm., Joint Sc. on Iron and Steel Basic Research of ISIJ, ISIJ,Tokyo, 1977.

  4. A. Suzuki, T. Suzuki, Y. Nagaoka, and Y. Iwata: J. Jpn. Inst. Met., 1968, vol. 32, pp. 1301-05.

    Article  CAS  Google Scholar 

  5. A. Jablonka, K. Harste, and K. Schwerdtfeger: Steel Res., 1991, vol. 62, pp. 24-33.

    Article  CAS  Google Scholar 

  6. K. Gryc, B. Smetana, M.Zaludova, K. Michalek, P. Klus, M. Tkadleckova, L. Socha, J. Dobrovska, P. Machovcak, L. Valek, R. Pachlopnik, and B.Chmiel: Mater. Technol., 2013, vol. 47, pp. 569-75.

    CAS  Google Scholar 

  7. E. A. Mizikar: Trans. AIME, 1967, vol. 239, pp. 1747-53.

    CAS  Google Scholar 

  8. J. Szekely and V. Stanek: Metall.Trans., 1970, vol. 1, pp. 119-26.

    Article  CAS  Google Scholar 

  9. J. Matsuno, H. Nakato, and H. Ohi: Tetsu-to-Hagane, 1974, vol. 60, pp. 1023-32.

    Article  Google Scholar 

  10. Y. K. Chaung and K. Schwerdfeger: Arch. Eisenhüttenwes., 1973, vol. 44, pp. 341-7.

    Article  Google Scholar 

  11. P.H. Shingu, K. Takeshita, R. Ozaki, and T. Akiyama: J. Jpn. Inst. Met., 1978, vol. 42, pp. 172-9.

    Article  CAS  Google Scholar 

  12. H. D. Brody and M. C. Flemings: Trans. AIME, 1966, vol. 236, pp. 615-24.

    CAS  Google Scholar 

  13. T. W. Clyne and W. Kurz: Met. Trans., 1981, vol. 12A, pp. 965-71.

    Article  Google Scholar 

  14. I. Ohnaka and T. Fukusako: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, pp. 410-8.

    CAS  Google Scholar 

  15. K. Kumai, A. Sano, T. Ohashi, E. Nomura, and H.Fujii: Tetsu-to-Hagane’, 1974, vol. 7, pp. 894-914.

    Article  Google Scholar 

  16. S. Asai and I. Muchi: Tetsu-to-Hagane’, 1978, vol. 64, pp. 1685-92.

    Article  Google Scholar 

  17. R. N. Hills, D. E. Looper, and P. H. Roberts: Q.J. Mech. Appl. Math. 1983, vol. 36, pp. 505-39.

    Google Scholar 

  18. D. V. Alexandrov: J.Crystal Growth, 2001, vol. 222, pp. 816-21.

    Article  CAS  Google Scholar 

  19. K. Takeshita: J.Jpn. Inst.Met., 1983, vol. 47, pp. 647-53.

    Article  CAS  Google Scholar 

  20. H. E. Huppert and M. G. Worster: Nature, 1985, vol. 314, pp. 703-7.

    Article  CAS  Google Scholar 

  21. D. V. Alexandrov and V. P. Malygin: Int. J. Heat Mass. Transf., 2006, vol. 49, pp. 763-9.

    Article  CAS  Google Scholar 

  22. T. Fujimura and J. K. Brimacombe: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 532-9.

    Article  CAS  Google Scholar 

  23. T. Kawawa: Tekko-no-Gyouko (Soidification of steel), Appendix 4, ed. By Solidification Comm., Joint Sc.on Iron and Steel Basic Research of ISIJ, ISIJ, Tokyo, 1977.

  24. H. S. Carslaw and J. G. Jaeger: Conduction of Heat in Solids, 2nd ed., Oxford University Press, 1959, pp. 284.

  25. T. Mitsuo, T. Horii, S. Saito, E. Nomura, Y. Kitamura, and R. Kono: Tetsu-to-Hagane, 1971, vol. 57, pp. 915-41.

    Article  CAS  Google Scholar 

  26. M. C. Flemings and G. E. Nero: Trans. Met. Soc. AIME, 1967, vol. 239, pp. 1449-61.

    CAS  Google Scholar 

  27. H. Nomura, T. Tarutani, and K. Mori: Tetsu-to-Hagane, 1981, vol. 67, pp. 80-7.

    Article  CAS  Google Scholar 

  28. K. Miyazawa: STA, 2001, vol. 2, pp. 59-65.

    CAS  Google Scholar 

  29. K. Harste: PhD. Dissertation, Technical University of Clausthal, Clausthal

  30. Y. A. Meng and B. G. Thomas: Metall. Mate. Trans. B, 2003, vol. 34B, pp. 685-705.

    Article  CAS  Google Scholar 

  31. A. Hays and Chipman: Trans. Met. Soc. AIME, 1938, vol. 135, pp. 85.

  32. W. A. Fisher, H. Splizer, and M. Hishinuma: Arch. Eisenhüttenwes., 1960, vol. 31, pp. 365.

    Article  Google Scholar 

  33. C. E. Sims: Electric Furnace Steelmaking, vol. 2, John Wiley & Sons, 1962, pp. 99.

  34. W. A. Tiller: J. Iron Steel Inst., 1959, vol. 192, pp. 338-50.

    CAS  Google Scholar 

  35. K. Katayama and S. Hattori: Trans. JSME, 1974, vol. 40, pp. 1404-11.

    Article  Google Scholar 

  36. R. A. Buckley and W. Hume-Rothery: J. Iron Steel Inst., 1960, vol. 196, pp. 403-6.

    CAS  Google Scholar 

  37. R. E. Grace and G. Derge: Trans. Metall. Soc. AIME, 1958, vol. 212, pp. 33-7.

    Google Scholar 

  38. R.Tanaka: Tetsu-to-Hagane, 1967, vol. 53, pp. 1586-1604.

    Article  CAS  Google Scholar 

  39. H. Esaka and S. Ogibayashi: Tetsu-to-Hagane, 1998, vol. 84, pp. 49-54.

    Article  CAS  Google Scholar 

  40. D. F. Kalinovich, I. I. Kovenskii, and M. D. Smolin: Izv. Vyssh. Ucheb. Zaved., Fiz., 1971, vol. 9, p. 116.

Download references

Acknowledgments

The authors thank Professor K. Ono, University of Kyoto, Japan, for his warm support. They wish to offer thanks to decedent, Professor J.K. Brimacombe, University of British Columbia, Canada, for his support on the development of the base model 30 years ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fujimura.

Additional information

Manuscript submitted May 9, 2017.

Appendices

Appendix A

The error of the approximation of the erf(η) is kept smaller than 0.2 pct for η > 1.73, as shown in Figure 9.

Fig. 9
figure 9

Error of approximation for the erf(η) used in the model

See Appendix Figure 9.

Appendix B

The unknown variables, important physical properties are shown in Table III. The typical carbon partition ratio k in the δ phase (a wide range of values is reported) is used. The left-hand and right-hand sides of Eqs. [71] and [72] are denoted as A, B, and C (B is commonly used). The unknown parameters minimizing the aimed function Z defined as follows were sought: Z = (1 − A/B)2 + (1 − C/B)2

$$ {\text{A}} = {\frac{{\text{K}_{1} (T^{*} - T^{\text{s}} )\exp \left\{ {\left( {1 - \displaystyle\frac{{\beta_{2} }}{{\beta_{1} }}} \right)\eta_{2}^{*2} } \right\}}}{{(T^{*} - T^{\circ} )\,{\text{erf}}\left( {\sqrt {\displaystyle\frac{{\beta_{2} }}{{\beta_{1} }}\left( {\eta_{2}^{*} } \right)\sqrt {\beta_{1} } } } \right)}}} $$
$$ {\text{B}} = \frac{{\text{K}_{2} }}{{\left\{ {{\text{erf}}\left( {\eta_{2}^{*} } \right) - {\text{erf}}\left( {\eta_{2}^{\circ} )} \right)} \right\}\sqrt {\beta_{2} } }} $$
$$ {\text{C}} = \frac{{\text{K}_{3} (T^{i} - T^{\circ} )\exp \left\{ {\left( {1 - \displaystyle\frac{{\beta_{2} }}{{\beta_{3} }}} \right)\eta_{2}^{{\circ}2} } \right\}}}{{(T^{*} - T^{\circ} )\left\{ {1 - {\text{erf}}\left( {\sqrt {\displaystyle\frac{{\beta_{2} }}{{\beta_{3} }}} \eta_{2}^{\circ} } \right)} \right\}\sqrt {\beta_{3} } }} $$
$$ {\text{D}}:\frac{{\left\{ {1 - {\text{erf}}\left( {\eta_{2}^{\circ} } \right)} \right\}}}{{\left\{ {{\text{erf}}\left( {\eta_{2}^{*} } \right) - {\text{erf}}\left( {\eta_{2}^{\circ} } \right)} \right\}}} = \frac{2(1 - \text{k})}{{\left( {2 - \text{k} - \alpha \text{k}} \right)}}C^{\circ} \lambda + \frac{{(1 + \alpha ){\text{k}}}}{{(2 - {\text{k}} - \alpha {\text{k}})}} - \frac{{\alpha {\text{kD}}}}{{E - \alpha {\text{kD}}}} $$
  1. (1)

    First, the initial values for \(T^{*}\), \(\eta^*\), and \(\eta^{\circ}\) are given. The \(T^{*}\) calculated with the reported formula is used as the initial value for \(T^{*}\). The initial \(\eta^{\circ}\) was 1.0. The \(\eta^*\) was given as \(\eta^* = \gamma\eta^{\circ}\) where the initial γ = 0.3.

  2. (2)

    Second, the \(\eta^{\circ}\) is changed to minimize Z for the initial \(T^{*}\). Convergence is quickly obtained.

  3. (3)

    Next, \(\eta^*\) minimizing Z is obtained by changing γ (\(\eta^*=\gamma\eta^{\circ}\) ).

  4. (4)

    Substituting \(\eta^*\), \(\eta^{\circ}\) obtained by the above process to the left side of [67] provides λ (used in the right side of the Eq. [67], (D: shown above). Substituting this λ into [9], yields the new \(T^{*}\). Using this \(T^{*}\) as the initial \(T^{*}\) and repeating the same process mentioned above [2] to [4] yields the set of (\(T^{*}\), \(\eta^*\), and \(\eta^{\circ}\)) as the three Eqs. [67], [71], and [72] match.

  5. (5)

    This process is repeated until Z < 0.1, and the four decimal digits do not change in the present analysis.

Table III Unknown Variables and Physical Properties Used in the Model and the Equations to Determine Unknown Properties

Appendix C

The carbon concentration in a cylindrical dendrite becomes almost homogeneous at the end of solidification due to the rapid diffusion, as shown in Figure 10.

Fig. 10
figure 10

Transition of C in the solid during the growth of a dendrite. C in the liquid was increased according to the model predictions. (\(C^{\circ}\)/0.15 pct, \( C ^{*}_{\text{s}} \)/0.138 pct, D = 6.6 × 10−10 m2/s, solidification time = 213 s, dendrite diameter = 500 µm)

See Appendix Figure 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimura, T., Takeshita, K. & Suzuki, R.O. Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-Transfer Equations in the Liquid–Solid Zone. Metall Mater Trans B 49, 644–657 (2018). https://doi.org/10.1007/s11663-017-1149-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1149-8

Keywords

Navigation