Skip to main content
Log in

Thermodynamic Analysis on the Coprecipitation of Ni-Co-Mn Hydroxide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The thermodynamic data of various species in Ni-H2O, Co-H2O, Mn-H2O, and Ni-Co-Mn-H2O systems were obtained by thermodynamic calculation. The potential-pH diagrams for Ni-H2O, Co-H2O, and Mn-H2O systems at different ion activities at 323 K (50 °C), as well as Ni-Co-Mn-H2O complex systems at activity 1.00 at 298 K, 323 K, and 373 K (25 °C, 50 °C, and 100 °C) were constructed, respectively. The costable regions of Ni(OH)2, Co(OH)2, and Mn(OH)2 are verified to be thermodynamically stable in aqueous solution, which indicates the thermodynamic possibility of Ni-Co-Mn hydroxide coprecipitation. The potential-pH diagrams show that the temperature and ion activity have significant effects on the coprecipitation process. As the temperature increases or the ion activity decreases, the coprecipitation region of the Ni-Co-Mn hydroxide narrows. Moreover, the metal oxides, rather than the metal hydroxide, are more easily formed when the temperature increases. Experimental confirmation was performed to further verify the constructed potential-pH diagrams. The Ni-Co-Mn hydroxide with typical hexagonal CdI2 structure and quasi-spherical morphology was successfully obtained, and the SEM results show the uniform distribution of the elements Ni, Co, and Mn. The experimental results confirm the reliability of the prediction of thermodynamics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M.S. Whittingham: Am. Chem. Soc., 2004, vol. 104, pp. 4271–4301.

    Google Scholar 

  2. Y.S. Jung, A.S. Cavanagh, A.C. Dillon, M.D. Groner, S.M George, and S.H Lee: Electrochem. Soc., 2010, vol. 157, pp. A75–A81.

  3. Z.C Liu, H.H Zhen, Y. Kim, and C.D Liang: Power Sources, 2011, vol. 196, pp. 10201–20206.

  4. T.F. Yi, Y.R. Zhu, X.D. Zhu, J. Shu, C.B. Yue, and A.N. Zhou: Ionics, 2009, vol. 15, pp. 779–84.

    Article  Google Scholar 

  5. A. Kuwahara, S. Suzuki, and M. Miyayama: Electroceramics, 2010, vol. 24, pp. 69–75.

    Article  Google Scholar 

  6. D.C Li, T. Muta, L.Q. Zhang, M. Yoshio, and H. Noguchi: Power Sources, 2004, vol. 132, pp. 150–55.

  7. T. Ohzuku and Y. Makimura: Chem. Lett., 2001, vol. 7, pp. 642–43.

    Article  Google Scholar 

  8. X.Y. Jiang, Y. Sha, R. Cai, and Z. Shao: Mater. Chem. A, 2015, vol. 3, pp. 10536–44.

    Article  Google Scholar 

  9. M.H. Lee, Y.J. Kang, S.T. Myung, and Y.K. Sun: Electrochim. Acta, 2004, vol. 50, pp. 939–48.

    Article  Google Scholar 

  10. C. Deng, L. Liu, W. Zhou, K. Sun, and D. Sun: Electrochim. Acta, 2008, vol. 53, pp. 2441–47.

    Article  Google Scholar 

  11. C.H. Chen, C.J. Wang, and B.J. Hwang: Power Sources, 2005, vol. 14, pp. 626–29.

    Article  Google Scholar 

  12. M. Shui, S. Gao, J. Shu, W.D. Zheng, D. Xu, L.L. Chen, L. Feng, and Y.L. Ren: Ionics, 2013, vol. 19, pp. 41–46.

    Article  Google Scholar 

  13. S.H. Park, C.S. Yoon, S.G. Kang, H.S. Kim, S.I. Moon, and Y.K. Sun: Electrochim. Acta, 2004, vol. 49, pp. 557–63.

    Article  Google Scholar 

  14. X.Y. Xiao and Y.Q. Ye: South China Univ. Technol., 2010, vol. 38, pp. 30–34.

    Google Scholar 

  15. J.T. Su, Y.C. Su, and Z.G. Lan: Chin. Batt. Industry, 2008, vol. 13, pp. 18–21.

    Google Scholar 

  16. B. Beverskog and I. Puigdomench: Corros. Sci., 1997, vol. 39, pp. 969–80.

    Article  Google Scholar 

  17. P.A. Brook: Corros. Sci., 1972, vol. 12, pp. 297–306.

    Article  Google Scholar 

  18. J. Chivot, L. Mendoza, C. Mansour, T. Pauporte, and M. Cassir: Corros. Sci., 2008, vol. 50, pp. 62–64.

    Article  Google Scholar 

  19. B. Messaoudi, S. Joiret, M. Keddam, and H. Takenouti: Electrochim. Acta, 2001, vol. 46, pp. 88–90.

    Article  Google Scholar 

  20. S.L. Zhang and Z.L. Liang: Nonferrous Met., 1982, vol. 34, pp. 65–67.

    Google Scholar 

  21. Z.Q. Zhong and G.G. Mei: Application of Diagrams of Chemical Potential in Hydrometallurgy and Purification of Waste Water, Central South University Press, Changsha, 1986, pp. 36–38.

    Google Scholar 

  22. O. Kubaschcwski and C.B. Alcock: Metallurgical Thermochemistry, 5th ed., Metallurgical Industry Press, Beijing, 1985, p. 222.

    Google Scholar 

  23. W.M. Latimer: The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, 2nd ed., Prentice-Hall, New York, NY, 1952, pp. 359–65.

    Google Scholar 

  24. R.E. Connick and R.E. Powell: Chem. Phys., 1953, vol. 21, pp. 2006–07.

    Google Scholar 

  25. K.X. Tan, Q.L. Wang, and H.S. Wang: Rong Jin Cai Kuang Re Li Xue He Dong Li Xue, Central South University Press, ChangSha, 2003, pp. 35–36.

  26. S. Zhang, C. Deng, B.L. Fu, S.Y. Yang, and L. Ma: Power. Technol., 2010, vol. 198, pp. 373–80.

    Article  Google Scholar 

  27. J.G. Speight: Lange’s Handbook of Chemistry, 16th ed., McGraw-Hill, New York, NY, 2004, pp. 1246–59.

    Google Scholar 

  28. S.M. Wen, Z.W. Zhao, and G.S. Huo: Chin. Power Sources, 2005, vol. 29, pp. 423–25.

    Google Scholar 

  29. C.H. Guo, Z.W. Zhao, and G.S. Huo: Chin. J. Power Sources, 2005, vol. 29, pp. 376–78.

    Google Scholar 

  30. R.L. Cowan and R.W. Staehle: Electrochem. Soc., 1971, vol. 118, pp. 557–59.

    Article  Google Scholar 

  31. C.X. Lin, Z.H. Bai, and Z.R. Zhang: Handbook of Minerals and Related Thermochemical Data, Science Press, Beijing, 1985, p. 36.

    Google Scholar 

  32. Z.W. Zhao and G.S. Huo: Chin. J. Nonferrous Met., 2004, vol. 14, pp. 1926–33.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Government of Guangxi Zhuang Autonomous Region (Glorious Laurel Scholar Program No. 2011A025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjiao Li.

Additional information

Manuscript submitted January 19, 2016.

Appendices

Appendix A

See Table AI.

Table AI \( \Delta_{r} G_{298.15}^{\varTheta } \) and \( \Delta_{r} \text{S}_{298.15}^{\varTheta } \) of Various Species Considered in the Me-H2O System at 298.15 K (25 °C)

Appendix B

See Table BI.

Table BI \( \varphi_{T}^{\varTheta } \) of Reactions in the Me-H2O Systems at 298 K, 323 K, and 373 K (25 °C, 50 °C, and 100 °C)

Appendix C

See Table CI.

Table CI \( \text{pH}_{T}^{\varTheta } \) of Reactions in the Me-H2O Systems at 298 K, 323 K, and 373 K (25 °C, 50 °C, and 100 °C)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, Y., Li, L. et al. Thermodynamic Analysis on the Coprecipitation of Ni-Co-Mn Hydroxide. Metall Mater Trans B 48, 2743–2750 (2017). https://doi.org/10.1007/s11663-017-0985-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0985-x

Keywords

Navigation