Skip to main content
Log in

Evolution of Temperature and Solid Slag Film During Solidification of Mold Fluxes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model based on one-dimensional transient heat conduction was developed to calculate temperature distribution of slag film during cooling process. Solid slag film was obtained from a water-cooled copper detector, and the evolution of its structure was analyzed according to the calculated results and crystallization behavior of mold fluxes. During formation process of the solid slag film, the cooling rate of liquid slag first increases, and then decreases with time. The maximum value of the cooling rate may exceed 50 K/s. Before the solid slag film is formed, the cooling rate of molten slag on the detector side is much higher than that of slag on the liquid slag side. Experimental results indicate that the thermal history of a cooling process has an effect on the crystallization temperature of mold flux. In addition, variation of temperature can also influence the structure of solid slag film since the increase of temperature inside the slag film may lead to the crystallization of the glassy layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. K.C. Mills, A.B. Fox, Z. Li and P. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26-34.

    Article  Google Scholar 

  2. K.C. Mills, L. Courtney, A.B. Fox, B. Harris, Z. Idoyaga, and M.J. Richardson: Thermochimi Acta, 2002, vol. 391, pp. 175-84.

    Article  Google Scholar 

  3. H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata: ISIJ int., 2008, vol. 48, pp. 446-53.

    Article  Google Scholar 

  4. J.W. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ int., 1998, vol. 38, pp. 440-46.

    Article  Google Scholar 

  5. J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, and J.H. Park: ISIJ int., 2013, vol. 53, pp. 62-70.

    Article  Google Scholar 

  6. C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim: Metall,Mater, Trans. B, 2014, vol. 45B, pp. 1081-97.

    Article  Google Scholar 

  7. Y. Kashiwaya, C.E. Cicutti, A.W. Cramb, and K. Ishii: ISIJ int., 1998, vol. 38, pp. 348-56.

    Article  Google Scholar 

  8. J. Li, W.L. Wang, J. Wei, D. Huang, and H. Matsuura: ISIJ int., 2012, vol. 52, pp. 2220-25.

    Article  Google Scholar 

  9. W.L. Wang, K. Blazek, and A. Cramb: Metall,Mater, Trans. B, 2008, vol. 39B, pp. 66-74.

    Article  Google Scholar 

  10. Y. Meng, and B.G. Thomas: Metall,Mater, Trans. B, 2003, vol. 34B, pp. 707-25.

    Article  Google Scholar 

  11. Y. Meng, and B.G. Thomas: ISIJ int., 2006, vol. 46, pp. 660-69.

    Article  Google Scholar 

  12. L.J. Zhou, W.L. Wang, R. Liu, and B.G. Thomas: Metall,Mater, Trans. B, 2013, vol. 44B, pp. 1264-79.

    Article  Google Scholar 

  13. B.X. Lu, K. Chen, W.L. Wang, and B.B. Jiang: Metall,Mater, Trans. B, 2014, vol. 45B, pp. 1496-509.

    Article  Google Scholar 

  14. L.J. Zhou, W.L. Wang, and K.C. Zhou: Metall,Mater, Trans. E, 2015, vol. 2E, pp. 99-108.

    Google Scholar 

  15. J.X. Gao, G.H. Wen, Q.H. Sun, P. Tang and Q. Liu: Metall,Mater, Trans. B, 2015, vol. 46B, pp. 1850-59.

    Article  Google Scholar 

  16. G.H. Wen, P. Tang, B. Yang, and X.B. Zhu: ISIJ int., 2012, vol. 52, pp. 1179-85.

    Article  Google Scholar 

  17. G.H. Wen, S. Sridhar, P. Tang, X. Qi, and Y.Q. Liu: ISIJ int., 2007, vol. 47, pp. 1117-25.

    Article  Google Scholar 

  18. C.L. Yang, G.H. Wen, P. Tang, C.C. X, and Q.H. Sun: Powder Diffr., 2016, vol. 31, pp. 40-51.

    Article  Google Scholar 

  19. J.W. Cho, T. Emi, H. Shibata, and M. Suzuki: ISIJ int., 1998, vol. 38, pp. 834-42.

    Article  Google Scholar 

  20. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.

    Article  Google Scholar 

  21. C.B. Shi, M.D. Seo, H. Wang, J.W. Cho, and S.H. Kim: Metall,Mater, Trans. B, 2015, vol. 46B, pp. 345-56.

    Article  Google Scholar 

  22. L. Garnier, S. Duquesne, S. Bourbigot, R. Delobel: Thermochimi. Acta, 2009, vol. 481, pp.32-45.

    Article  Google Scholar 

  23. P. Supaphol, J. Thanomkiat, R.A., Phillips: Polym. Test., 2004, vol. 23, pp. 881-95.

    Article  Google Scholar 

  24. G. Prasath Balamurugan, S.N. Maiti: J. Appl. Polym. Sci., 2008, vol. 107, pp. 2414-35.

    Article  Google Scholar 

  25. Q.X. Zhang, Z.H. Zhang, H.F. Zhang, Z.S. Mo: J. Poly. Sci.-Polym. Phys., 2002, vol. 40, pp.1784-93.

    Article  Google Scholar 

  26. X. Liu, C. Li, Y. Xiao, D. Zhang, W. Zeng: J. Appl. Polym. Sci., 2006, vol. 102, pp. 2493-99.

    Article  Google Scholar 

  27. M. Run, Y. Wang, C. Yao, J. Gao: Thermochim. Acta, 2006, vol. 447, pp. 13-21.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to express their gratitude to the China national Science Foundation (Grant No. 51574050) for providing financial support which enabled this study to be successfully carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Yang.

Additional information

Manuscript submitted October 11, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wen, G., Sun, Q. et al. Evolution of Temperature and Solid Slag Film During Solidification of Mold Fluxes. Metall Mater Trans B 48, 1292–1307 (2017). https://doi.org/10.1007/s11663-017-0917-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0917-9

Keywords

Navigation