Skip to main content
Log in

Formation of a Network Structure in the Gaseous Reduction of Magnetite Doped with Alumina

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Reduction of un-doped magnetite is developed topochemically with the formation of a dense iron shell. However, the reduction of alumina-doped magnetite to wüstite proceeds with the formation of a network-like structure which consists of criss-crossed horizontal and vertical plates of wüstite. Reduction of magnetite includes the conversion of Fe3+ to Fe2+ and the movement of iron cations from the tetrahedral sites on the {400} and {220} planes of magnetite to the octahedral sites on the {200} planes of wüstite. Alumina has a negligibly small solubility in wüstite. In the reduction of magnetite doped with Al2O3, rejected Al3+ cations from wüstite diffuse to the magnetite–hercynite solid solution. Enrichment of the Fe3O4–FeAl2O4 solution with alumina in the vicinity of the reduction interface restricts the growth of {220} planes of wüstite and nucleation of {220} planes adjusted to the existing planes, preventing the merging of wüstite plates during the reduction process. Reduction of magnetite from the magnetite–hercynite solid solution practically stops when the Al3+ content at the interface approaches the solubility limit. Wüstite in the separated plates is reduced further to iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Kapelyushin, X. Xing, J. Zhang, Y. Sasaki and O. Ostrovski: Metall. Mater.Trans. B, 2015, vol. 46B, pp. 1162-1174.

    Google Scholar 

  2. Y. Kapelyushin, Y. Sasaki, J. Zhang, S. Jeong and Oleg Ostrovski: Metall. Mater.Trans. B, 2015, vol. 46B, pp. 1-9.

    Google Scholar 

  3. T.Paananen, K. Heinänen and J. Härkki: ISIJ Int., 2003, vol. 43, pp. 597-605.

    Article  Google Scholar 

  4. E. Park and O. Ostrovski: ISIJ Int., 2003, vol.43, pp. 1316-1325.

    Article  Google Scholar 

  5. J. B. Wright: N. Z. J. Geol. Geophys., 1964, vol. 7, pp. 424-444.

    Article  Google Scholar 

  6. A. F. Buddington and D. H. Lindsely: J. Pet. Technol., 1964, vol. 5, pp. 310-357.

    Google Scholar 

  7. S. E. Haggerty: Rev. Mineral., 1991, vol. 25, pp. 129-219.

    Google Scholar 

  8. J. B. Wright and J. F. Lovering: Mineral Mag., 1961, vol. 32, pp. 778-789.

    Article  Google Scholar 

  9. T. Akimoto, H. Kinoshita and T. Furuta: Earth Planet Sci. Let., 1984, vol. 71, pp. 263-279.

    Article  Google Scholar 

  10. K. Momma and F. Izumi, Commission on Crystallogr. Comput., IUCr Newslett., No. 7 (2006) pp. 106–19.

  11. K. E. Sickafus and J. M. Wills: J. Am. Ceram. Soc., 82 (1999), pp. 3279-92.

    Article  Google Scholar 

  12. L. von Bogdandy and H, J. Engell: The Reduction of Iron Ore, Springer, Berlin, 1971, pp. 24–36.

  13. M. Katsumi, Y. Tamaru, Y. Kashiwaya and K. Ishii: 6th International Iron and Steel Congress, Nagoya, Japan, 1990, vol. 1, pp. 50–57.

  14. N. Tsuda, K. Nasu, A. Fujimori and K. Shiratori: Electronic conduction in oxides, Springer-Verlag, Berlin 1991, pp. 207-209.

    Book  Google Scholar 

  15. G. H. Geiger, R. L. Levin and J. B. Wagner, Jr: J. Phys. Chem. Solids, 1966, vol. 27, pp. 947-956.

    Article  Google Scholar 

  16. G. Gartstein and T. O. Mason: J. Amer. Ceram. Soc., 1982, vol. 66, pp.C24-C26.

    Google Scholar 

  17. R. A. Serway: Principles of Physics, 2nd ed., Fort Worth, Texas, Saunders College Pub. 1998, p. 602.

  18. F. Lihl and F. Nemec: Ber. Dt. Keram. Gas., 1963, vol. 40, pp. 365-372.

    Google Scholar 

  19. F. Lihl and F. Nemec: Ber. Dt. Keram. Gas., 1963, vol. 40, pp. 467-477.

    Google Scholar 

  20. L. von Bogdandy and H.J. Engell: The Reduction of Iron Ore, Springer, Berlin, 1971, pp. 185–87.

  21. X. Guo, Y. Sasaki, Y. Kashiwaya and K. Ishii: Metall. and Mater. Trans. B, 2001, vol. 35B, pp. 517-522.

    Google Scholar 

  22. K. Ishii, Y. Kashiwaya, Y. Sasaki and Y. Watanabe: CAMP-ISIJ, 1997, vol. 10, pp. 712-717.

    Google Scholar 

  23. A.C. Turnock and H.P. Eugster: J. Petrol, 1962, vol. 3, pp. 533-565.

    Article  Google Scholar 

  24. G. Dehe, B. Seidel, K. Melzer and C. Michalk: phys. Stat. solidi (a), 1975, vol. 31, pp. 439–47.

  25. T. O. Mason and H. K. Bowen: J. Amer. Ceram. Soc., 1981, vol. 64, pp. 237-242.

    Article  Google Scholar 

  26. J. O. Edström: J. Iron Steel Inst., 1953, vol.175, 289-304.

    Google Scholar 

  27. R. L. Levin and J. B. Wagner Jr.: Trans. Met. Soc. AIME, 1965 vol. 233, pp. 159-168.

    Google Scholar 

  28. S. Hallström, L. Höglund and J. Ågren: Acta. Mater., 2011, vol. 59, pp. 53-60.

    Article  Google Scholar 

  29. Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He and F. -Y. Xie: Mater. Sci. Eng., 2003, vol. A363, pp. 140-151.

    Article  Google Scholar 

  30. H. -G. Sockel and H. Schmalzried: Ber. Bunsenges. Phys. Chem., 1968, vol. 72, pp. 745-754.

    Google Scholar 

  31. R. Dieckmann and H. Schmalzried: Ber. Bunsenges. Phys. Chem., 1977, vol. 81, pp. 344-347.

    Article  Google Scholar 

  32. Dieckmann and H. Schmalzried: Ber. Bunsenges. Phys. Chem., 1977, vol. 81, pp. 414–19.

  33. J. W. Halloran and H. K. Bowen: J. Amer. Ceram. Soc., 1980, vol. 81, pp. 58-64.

    Article  Google Scholar 

  34. N. L. Peterson, W. K. Chen and D. Wolf: J. Phys. Chem. Solids, 1980, vol. 42, pp. 709-719.

    Article  Google Scholar 

  35. R. Dieckmann and H. Schmalzried: Ber. Bunsenges. Phys. Chem., 1986, vol. 90, pp. 564-575.

    Article  Google Scholar 

  36. R. Dieckmann and M. R. Hilton and T. O. Mason: Ber. Bunsenges. Phys. Chem., 1987, vol. 91, pp. 59-66.

    Article  Google Scholar 

  37. C. A. McCammon and L-G. Liu: Phys. Chem. Minerals, 1984, vol. 10, pp. 106-13.

Download references

Acknowledgments

This project was financially supported by POSCO (South Korea) and Australian Research Council (ARC Linkage Project LP1200200634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sasaki.

Additional information

Manuscript submitted September 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapelyushin, Y., Sasaki, Y., Zhang, J. et al. Formation of a Network Structure in the Gaseous Reduction of Magnetite Doped with Alumina. Metall Mater Trans B 48, 889–899 (2017). https://doi.org/10.1007/s11663-016-0897-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0897-1

Keywords

Navigation