Skip to main content
Log in

Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2x Al2y Si1−x−y O z (0 < x < 1, 0 < y < x and z = 1 − x − y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. L. Chen, X. Ma, L. Wang, and X. Ye: Mater. Design., 2011, vol. 32, pp. 2206-2212.

    Article  Google Scholar 

  2. R.J. Matway, M.F. McGuire, and J. Mehta: US. Patent, 1995, US005393487A.

  3. 3. J.O. Nilsson: Fatigue Fract. Eng. M., 1984, vol. 7, pp. 55-64.

    Article  Google Scholar 

  4. G. Cai and C. Li: Mater. Corros., 2015, vol. 66, pp. 1445–55.

    Article  Google Scholar 

  5. 5. P.E. Waudby: Int. Metals Rev., 1978, vol. 23, pp. 74-98.

    Google Scholar 

  6. 6. N. Kojola, S. Ekerot, M. Andersson, and P.G. Jönsson: Ironmak. Steelmak., 2011, vol. 38, pp. 1-11.

    Article  Google Scholar 

  7. 7. N. Kojola, S. Ekerot, and P.G. Jönsson: Ironmak. Steelmak., 2011, vol. 38, pp. 81-89.

    Article  Google Scholar 

  8. E. Roos, A. Karasev, and P.G. Jönsson: Steel Res. Int., in press.

  9. 9. Y. Yao, M. Zhu, D. Wang, C. Liu, and M. Jiang: Chinese Rare Earth, 2004, vol. 25, pp. 17-19.

    Google Scholar 

  10. 10. M. Lind and L. Holappa: Metall. and Mater.Trans. B, 2010, vol. 41, pp. 359-366.

    Article  Google Scholar 

  11. 11. D. Janke, Z. Ma, P. Valentin, and A. Heinen: ISIJ Int., 2000, vol. 40, pp. 31-39.

    Article  Google Scholar 

  12. 12. L. Holappa, M. Hämäläinen, M. Liukkonen, and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111-115.

    Article  Google Scholar 

  13. 13. Y. Jun, X. Wang, M. Jiang, and X. Wang: J. Iron Steel Res. Int., 2011, vol. 18, pp. 8-14.

    Google Scholar 

  14. 14. L. Zhang, Y. Ren, H. Duan, W. Yang, and L. Sun: Metall. and Mater.Trans. B, 2015, vol. 46, pp. 1809-1825.

    Article  Google Scholar 

  15. 15. T. Zhang, Y. Min, and M. Jiang: Can. Metall. Quart., 2015, vol. 54, pp. 161-169.

    Article  Google Scholar 

  16. 16. K. Fujii, T. Nagasaka and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059-1066.

    Article  Google Scholar 

  17. 17. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-1346.

    Article  Google Scholar 

  18. 18. Y. Ren, L. Zhang, W. Yang, and H. Duan: Metall. and Mater.Trans. B, 2014, vol. 45, pp. 2057-2071.

    Article  Google Scholar 

  19. 19. T. Zhang, Y. Min, C. Liu, and M. Jiang: ISIJ Int., 2015, vol. 55, pp. 1541-1548.

    Article  Google Scholar 

  20. 20. A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2110-2117.

    Article  Google Scholar 

  21. 21. A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2118-2125.

    Article  Google Scholar 

  22. 22. Z. Liu, J. Wei, and K. Cai: ISIJ Int., 2002, vol. 42, pp. 958-963.

    Article  Google Scholar 

  23. 23. L. Fang, H. Liu, C. Liu, and M. Jiang: Chinese Rare Earth, 2008, vol. 29, pp. 88-91.

    Google Scholar 

  24. 24. Y. Li, C. Liu, C. Li, and M. Jiang: J. Iron Steel Res. Int., 2015, vol. 22, pp. 457-463.

    Article  Google Scholar 

  25. 25. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965-971.

    Article  Google Scholar 

  26. 26. A. Vahed and D.A.R. Kay: Metall. and Mater.Trans. B, 1976, vol. 7, pp. 375-383.

    Article  Google Scholar 

  27. 27. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980.

    Google Scholar 

  28. 28. D. Alaoua, S. Lartigue, A. Larere, and L. Priester: Mat. Sci. Eng. A-Struct., 1994, vol. 189, pp. 155-163

    Article  Google Scholar 

  29. 29. K. Yamamoto, T. Hasegawa, and J.I. Takamura: ISIJ Int., 1996, vol. 36, pp. 80-86

    Article  Google Scholar 

  30. 30. K.A. Taylor: Scripta Metall. Mater., 1995, vol. 32, pp. 7-12.

    Article  Google Scholar 

  31. 31. J.Y. Park, J.K. Park, and W.Y. Choo: ISIJ Int., 2000, vol. 40, pp: 1253-1259.

    Article  Google Scholar 

  32. 32. E. Chen, Y. Dong, and S. Guo: Acta Metall. Sin., 1997, vol. 33, pp. 831-837.

    Google Scholar 

  33. 33. T. Du: J. Iron Steel Res., 1994, vol. 6, pp. 6-12.

    Google Scholar 

  34. 34. E. Yue, S. Qiu, and Y. Gan: J. Iron Steel Res., 2006, vol. 18, pp. 49-52.

    Google Scholar 

  35. 35. G. Tang, X. Wu, X. Wu, X. Yong, A. Bai, Z. Liu, and Q. Yong: Heat Treatment Metals, 2008, vol. 33, pp. 67-72.

    Google Scholar 

  36. 36. S. Luo, M. Zhu, C. Ji, and Z. Cai: Iron Steel, 2010, vol. 45, pp. 31-36.

    Google Scholar 

  37. 37. M. Zhang, S. Li, Q. Zhang, and J. Zhang: J. Anhui Univ. Technol., 2012, vol. 29, pp. 207-210.

    Google Scholar 

  38. 38. A.D. Pelton: Calphad, 2001, vol. 25, pp. 319-328.

    Article  Google Scholar 

  39. 39. I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. and Mater.Trans. B, 2004, vol. 35, pp. 493-507.

    Article  Google Scholar 

  40. 40. L. Yue, L. Wang, and J. Han: J. Rare Earths, 2010, vol. 28, pp. 952-956.

    Article  Google Scholar 

  41. 41. X. Liu, J. Yang, and X. Gao: J. Univ. Sci. Technol. Beijing, 2010, vol. 32, pp. 605-609.

    Google Scholar 

  42. 42. F. Guo, Q. Lin, and X. Sun: J. Chinese Rare Earth Soc., 2004, vol. 22, pp. 614-618.

    Google Scholar 

  43. 43. Q. Zhai: J. Chinese Rare Earth Soc., 1995, vol. 13, pp. 60-62.

    Google Scholar 

Download references

Acknowledgments

This work was finally supported by the National Natural Science Foundation of China (51374059 and 51304042), the Fundamental Research Funds for the Central Universities (N130402020), and Scientific Research Foundation for Scholars in Yangtze Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tongsheng Zhang or Cheng Peng.

Additional information

Manuscript submitted May 15, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, C., Zhang, T. et al. Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements. Metall Mater Trans B 48, 956–965 (2017). https://doi.org/10.1007/s11663-016-0873-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0873-9

Keywords

Navigation