Skip to main content

Advertisement

Log in

Optimization of Process Parameters of Hybrid Laser–Arc Welding onto 316L Using Ensemble of Metamodels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Hybrid laser–arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters (i.e., laser power (P), welding current (A), distance between laser and arc (D), and welding speed (V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural networks

ANOVA:

Analysis of variance

BR:

Bead reinforcement

BW:

Bead width

DP:

Depth of penetration

EMs:

Ensemble of metamodels

GA:

Genetic algorithms

GMSELOO :

Generalized mean square leave-one-out errors

LAW:

Laser–arc welding

LOO:

Leave-one-out

MOGA:

Multi-objective genetic algorithm

NN:

Neural networks

NSGA:

Non-dominated sorting genetic algorithm

NSGA-II:

Improved non-dominated sorting genetic algorithm

RBF:

Radial basis function

RBFNN:

Radial basis function neural network

RMAE:

Relative maximum absolute error

RMSE:

Root mean square error

SVM:

Support vector machines

SVR:

Support vector regression

References

  1. Bendaoud, I., Matteï, S., Cicala, E., Tomashchuk, I., Andrzejewski, H., Sallamand, P., & Bouchaud, F.: Optics & Laser Technology, 2014, vol. 56, pp. 334-42.

    Article  Google Scholar 

  2. Atabaki, M. M., Ma, J., Liu, W., & Kovacevic, R., Materials & Design, 2015, vol. 67, pp. 509-21.

    Article  Google Scholar 

  3. Ma, N., Li, L., Huang, H., Chang, S., & Murakawa, H., Journal of Materials Processing Technology, 2015, vol. 220, pp. 36-45.

    Article  Google Scholar 

  4. Gao M., Chen C., Wang L., Wang Z., & Zeng X,: Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 2007-20.

    Article  Google Scholar 

  5. Zhao, Y., Zhang, Y., Hu, W., & Lai, X.: Optics and Lasers in Engineering, 2012, vol. 50, pp. 1267-73.

    Article  Google Scholar 

  6. Rong, Y., Zhang, Z., Zhang, G., Yue, C., Gu, Y., Huang, Y., Wang, C., Shao, X.: Optics and Lasers in Engineering, 2015, vol. 67, pp. 94-104.

    Article  Google Scholar 

  7. Ruggiero, A., Tricarico, L., Olabi, A. G., Benyounis, K. Y.: Optics & Laser Technology, 2011, vol. 43, pp. 82-90.

    Article  Google Scholar 

  8. Kuo, C. F. J., Chiu, H. Y., Syu, S. S., & Vu, Q. H.: Optics and Lasers in Engineering, 2014, vol. 52, pp. 250-60.

    Article  Google Scholar 

  9. Katherasan, D., Elias, J. V., Sathiya, P., Haq, A. N.: Journal of Intelligent Manufacturing, 2014, vol. 25, pp. 67-76.

    Article  Google Scholar 

  10. Singh, A., Cooper, D. E., Blundell, N. J., Pratihar, D. K., Gibbons, G. J.: International Journal of Computer Integrated Manufacturing, 2014, vol. 27, pp. 656-74.

    Article  Google Scholar 

  11. N.K. Lim: California State University, Long Beach, 2014.

  12. Gao, X. D., & Zhang, Y. X.: International journal of precision engineering and manufacturing, 2014, vol. 15, pp. 399-405.

    Article  Google Scholar 

  13. Gao, M., Chen, C., Mei, S., Wang, L., & Zeng, X.: The International Journal of Advanced Manufacturing Technology, 2014, vol. 74, pp. 199-208.

    Article  Google Scholar 

  14. Cao, X., Wanjara, P., Huang, J., Munro, C., & Nolting, A.: Materials & Design, 2011, vol. 32, pp. 3399-413.

    Article  Google Scholar 

  15. Atabaki, M. M., Ma, J., Yang, G., & Kovacevic, R.: Materials & Design, 2014, vol. 64, pp. 573-87.

    Article  Google Scholar 

  16. Brandizzi, M., Mezzacappa, C., Tricarico, L., & Satriano, A. A.: Welding International, 2012, vol. 26, pp. 901-9.

    Article  Google Scholar 

  17. Gao, Z., & Ojo, O. A.: Acta Materialia, 2012, vol. 60, pp. 3153-67.

    Article  Google Scholar 

  18. Zadeh, P. M., Toropov, V. V., & Wood, A. S. 2009: Struct. Multidiscip. Optim., 2009, vol. 38, pp. 103-15.

    Article  Google Scholar 

  19. Taguchi, G.: International Journal of Production Research., 1978, vol. 16, pp. 521–30.

    Article  Google Scholar 

  20. Chaki, S., Bathe, R. N., Ghosal, S., & Padmanabham, G.: J. Intell. Manuf., 2015, DOI: 10.1007/s10845-015-1187-5.

    Google Scholar 

  21. Hamarat, C., Kwakkel, J. H., Pruyt, E., & Loonen, E. T.: Simulation Modelling Practice and Theory, 2014, vol. 46, pp. 25-39.

    Article  Google Scholar 

  22. Shojaeefard, M. H., Akbari, M., & Asadi, P.: International Journal of Precision Engineering and Manufacturing, 2014, vol. 15, pp. 2351-6.

    Article  Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T.: IEEE Transactions on, 2002, vol. 15, pp. 182-97.

    Google Scholar 

  24. Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P.: Statis. Sci. 1989, 4, pp. 409-23.

    Article  Google Scholar 

  25. P. Jiang, J. Wang, Q. Zhou, and X. Zhang: Math. Probl. Eng., 2015, DOI:10.1155/2015/685958.

  26. Zhou, Q., Shao, X., Jiang, P., Zhou, H., & Shu, L.: Simulation Modelling Practice and Theory, 2015, vol. 59, pp. 18-35.

    Article  Google Scholar 

  27. Zheng, J., Shao, X., Gao, L., Jiang, P., & Qiu, H.: Engineering Optimization, 2015, vol. 47, pp. 719-36.

    Article  Google Scholar 

  28. Zheng, J., Shao, X., Gao, L., Jiang, P., & Qiu, H.: Expert Systems with Applications, 2014, vol. 41, pp. 2111-25.

    Article  Google Scholar 

  29. Wang, G. G., & Shan, S.: Journal of Mechanical Design, 2007, vol. 129, pp. 370-80.

    Article  Google Scholar 

  30. Acar, E.: Expert Systems with Applications, 2015, vol. 42, pp. 2703-9.

    Article  Google Scholar 

  31. Acar, E., & Rais-Rohani, M.: Structural and Multidisciplinary Optimization, 2009, vol. 37, pp. 279-94.

    Article  Google Scholar 

  32. Zhou, X. J., Ma, Y. Z., & Li, X. F.: Structural and Multidisciplinary Optimization, 2011, vol. 44, pp. 651-71.

    Article  Google Scholar 

  33. Aute, V., Saleh, K., Abdelaziz, O., Azarm, S., & Radermacher, R.: Struct. Multidiscip. Optim., 2013, vol. 48, pp. 581-605.

    Article  Google Scholar 

  34. Coello Coello, C. A.: Computers in Industry, 2000, vol. 41, pp.113-27.

    Article  Google Scholar 

  35. Gao, Y., Olivas-Martinez, M., Sohn, H. Y., Kim, H. G., & Kim, C. W.: Metallurgical and Materials Transactions B, 2012, vol. 43, pp. 1465-75.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Basic Research Program (973 Program) of China under Grant No. 2014CB046703, National Natural Science Foundation of China (NSFC) under Grant Nos. 51505163, 51323009, and 51421062, and the Fundamental Research Funds for the Central Universities, HUST: Grant No. 2014TS040. The authors also would like to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Additional information

Manuscript submitted September 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Jiang, P., Shao, X. et al. Optimization of Process Parameters of Hybrid Laser–Arc Welding onto 316L Using Ensemble of Metamodels. Metall Mater Trans B 47, 2182–2196 (2016). https://doi.org/10.1007/s11663-016-0664-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0664-3

Keywords

Navigation