Skip to main content
Log in

Comparative Study on Failure Prediction in Warm Forming Processes of Mg Alloy Sheet by the FEM and Ductile Fracture Criteria

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An important concern in metal forming is whether the desired deformation can be accomplished without any failure of the material, even at elevated temperatures. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element (FE) method for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. The uniaxial tensile tests of AZ31 alloy sheets with a thickness of 3 mm and FE simulations were performed to calculate the critical damage values for three kinds of ductile fracture criteria. The critical damage values for each criterion were expressed as the function of strain rate at various temperatures. In order to find out the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions were carried out at various temperatures and punch velocities. Based on the plastic deformation histories obtained from FE analysis of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under bi-axial tensile conditions. As a result, Cockcroft–Latham’s criterion showed good agreement with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Lee. Y.H. Chen and J.W. Wang: J. Mater. Process. Technol., 2002, Vol. 124, pp. 19-24.

    Article  Google Scholar 

  2. S. Yoshihara. K. Manabea and H. Nishimura: J. Mater. Process. Technol., 2005, Vol. 170, pp. 579-585.

    Article  Google Scholar 

  3. S.W. Kim, Y.S. Lee, Y.N. Kwon and J.H. Lee: Steel Res. Int., 2008, Vol. 79, pp. 691-698.

    Google Scholar 

  4. Q. Zhang, H. Guo, F. Xiao, L. Gao, A.B. Bondarev and W. Han: J. Mater. Process. Technol., 2009, Vol. 209, pp. 5514-5520.

    Article  Google Scholar 

  5. Z. Meng, S. Huang, K. Hu, W. Huang and Z. Xia: J. Mater. Process. Technol., 2011, Vol. 211, pp. 863-867.

    Article  Google Scholar 

  6. S.P. Keeler and W.A. Backofen: ASM Trans. Quart., 1964, Vol. 56, pp. 2548.

    Google Scholar 

  7. Y.S. Lee, Y.N. Kwon, S.H. Kang, S.W. Kim and J.H. Lee: J. Mater. Process. Technol., 2008, Vol. 201, pp. 431-435.

    Article  Google Scholar 

  8. A.F. Graf and W.F. Hosford: Met. Trans. A., 1993, Vol. 24A, pp. 2503-2512.

    Article  Google Scholar 

  9. H.J. Kleemola and M.T. Pelkkikangas: Sheet Metal Indust., 1977, Vol. 63, pp. 591-592.

    Google Scholar 

  10. M.G. Cockcroft and D.J. Latham: J. Inst. Metals, 1968, Vol. 96, pp. 33-39.

    Google Scholar 

  11. F.A. McClintock: Trans. ASME J. Appl. Mech., 1968, Vol. 17, pp. 363-371.

    Article  Google Scholar 

  12. J.R. Rice and D.M. Tracey: J. Mech. Phys. Solids, 1969, Vol. 17, pp. 201-217.

    Article  Google Scholar 

  13. P. Brozzo, B. DeLuka, and R. Rendia: Proc. 7th Biennial Conf. Int. Deep Draw. Res. Group Sheet Met. Form. Formab., 1972.

  14. S.I. Oh, C.C. Chen and S. Kobayashi: Trans. ASME J. Engr. Indus., 1979, Vol. 101, pp. 23-44.

    Article  Google Scholar 

  15. M. Oyane,T. Sato, K. Okimoto and S. Shima: J. Mech. Work. Technol., 1980, Vol. 4, pp. 65-81.

    Article  Google Scholar 

  16. S.E. Clift, P. Hartley, C.E.N. Sturgess and G.W. Rowe: Int. J. Mech. Sci., 1990, Vol. 32, pp. 1-17.

    Article  Google Scholar 

  17. M. Ayada, T. Higashino and K. Mori: Adv. Technol. of Plasticity, 1987, Vol. 1, pp. 553-558.

    Google Scholar 

  18. H. Takuda, T. Yoshii and N. Hatta: J. Mater. Process. Technol., 1999, Vol. 89-90, pp. 135-140.

    Article  Google Scholar 

  19. H. Takuda, T. Morishita, T. Kinoshita and N. Shirakawa: J. Mater. Process. Technol., 2005, Vol. 164-165, pp. 1258-1262.

    Article  Google Scholar 

  20. Y.Q. Cheng, H. Zhang, Z.H. Chen and K.F. Xian: J. Mater. Process. Technol., 2008, Vol. 208, pp. 29-34.

    Article  Google Scholar 

  21. I. Ulacia, C.P. Salisbury, I. Hurtado and M.J. Worswick: J. Mater. Process. Technol., 2011, Vol. 211, pp. 830-839.

    Article  Google Scholar 

  22. S. Yi, J. Bohlen, F. Heinemann and D. Letzig: Acta Mater., 2010, Vol. 58, pp. 592-605.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant (B551179-11-02-00) from the co-operative research project funded by the Ministry of Knowledge Economy, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Woo Kim.

Additional information

Manuscript submitted January 24, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SW., Lee, YS. Comparative Study on Failure Prediction in Warm Forming Processes of Mg Alloy Sheet by the FEM and Ductile Fracture Criteria. Metall Mater Trans B 45, 445–453 (2014). https://doi.org/10.1007/s11663-013-9886-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9886-9

Keywords

Navigation