Skip to main content
Log in

Novel Application of Alkali Oxides in Basic Tundish Fluxes for Enhancing Inclusion Removal in 321 Stainless Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fundamental work on the effect of alkali oxides including Li2O, Na2O, and K2O on the absorption ability of inclusions in a typical basic tundish flux for 321 stainless steels has been studied. The effects on the absorption ability are dependent on the type of alkali oxides and the amount composed within the tundish flux. Results from kinetics studies using an induction furnace at 1823 K (1550 °C) on the reaction of tundish fluxes containing alkali oxides with 321 stainless steels suggest minimal improvement with Li2O and Na2O additions and in some cases hindered inclusion removal, but K2O additions seems to significantly improve the cleanliness in the as-quenched 321 stainless steel melts compared to preexisting tundish flux compositions. Both Li2O and Na2O significantly lower the viscosity of the melt, while K2O increases the viscosity. Although alkali oxides have a propensity to enhance the cohesion of aluminate melts due to the ionic compensation effect in [AlO4]5−-tetrahedral structural units, this effect was not pronounced for Li2O and Na2O compared to K2O additions, which may be due to the large ionic radius size of potassium. An automated SEM–EDS analysis was utilized to identify the inclusion morphology and abundance within the steel. Fourier transform infrared spectroscopy was used to identify the effects of alkali oxides on the tundish flux structure for improved absorption capability and described the characteristic effect of K2O on increasing the asymmetric stretching vibrations of [AlO4]5−-tetrahedral structural units and Si-O-Al bonding within the flux, thus polymerizing the flux and selectively absorbing inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Zhang and B.G. Thomas : ISIJ Int., Vol.43 (2003), pp.271-91.

    Article  Google Scholar 

  2. J.-Y. Park and I. Sohn : Metall. Mater. Trans. B., Vol.44B (2013), pp.123-32.

    Article  Google Scholar 

  3. N. Bessho, H. Yamasaki, T. Fujii, T. Nozaki, and S. Hiwasa : ISIJ Int., Vol.32 (1992), pp.157-63.

    Article  Google Scholar 

  4. M. Byrne and A.W. Cramb, and T.W. Fenicle : Iron Steelmaker, Vol.15 (1988), pp.41-50.

    Google Scholar 

  5. E.T. Turkdogan : Archiv. Fur Das Eisenhuttenwessen, Vol.54 (1983), pp.1-10.

    Google Scholar 

  6. E.T. Turkdogan : Archiv. Fur Das Eisenhuttenwessen, Vol.54 (1983), pp.45-52.

    Google Scholar 

  7. R. Kiessling : Met. Sci., Vol.15 (1980), pp.161-72.

    Google Scholar 

  8. A.W. Cramb: in Impurities in Engineering Materials: Impact, Reliability, and Control, C.L. Briant, Marcel Decker Inc., New York, 1999, pp. 49–90.

  9. C.-B. Shi, X.-C. Chen, H.-J. Guo, Z.-J. Zhu, and X.-L. Sun : Metall. Mater. Trans. B, Vol.44 (2013), pp.378-89.

    Article  Google Scholar 

  10. P. Kaushik, J. Lehman, and M. Nadif : Metall. Mater. Trans. B, Vol.43B (2012), pp.710-25.

    Article  Google Scholar 

  11. P. Poncin and J. Droft: Materials and Processes for Medical Devices Conference, 8–10 September 2003.

  12. P. Tassot and N. Reichert : Revue de Metallurgie, Vol.107 (2010), pp.179-85.

    Article  Google Scholar 

  13. P.K. Jha, P.S. Rao, and A. Dewan : ISIJ Int., Vol.48 (2008), pp.154-60.

    Article  Google Scholar 

  14. S.K. Roy, M. Isac, and R.I.L Guthrie: Ironmak. Steelmak., 2011, vol. 38, pp. 759–68.

  15. L. Holappa, M. Kekkonen, S. Lachenkilpi, R. Hagemann, C. Schroder, and P. Scheller: Steel Res. Int., 2013, vol. 84, DOI:10.1002/srin.201200209.

  16. F. Li, B. Wang, Z. Jiang, S. He, and Q. Wang : Advanced Materials Research, Vol.284-286 (2011), pp.1284-90.

    Google Scholar 

  17. S.K. Kim, H. Suito, and R. Inoue : ISIJ Int., Vol. 52 (2012), pp.1935-1944.

    Article  Google Scholar 

  18. H. Fan, G. Gao, G. Wang, and L. Hu, Solid State Sci., Vol. 12 (2010), pp. 541-545.

    Article  Google Scholar 

  19. H. Li, P, Hrma, J.D. Vienna, M. Qian, Y. Su, and D.E. Smith: J. Non-Cryst. Solids, 2003, vol. 311, pp. 202–16.

    Article  Google Scholar 

  20. G.H. Kim and I. Sohn: ISIJ Int., Vol. 52 (2012), pp. 68-73.

    Article  Google Scholar 

  21. W.H. Kim, I. Sohn, and D.J. Min : Steel Res. Int., Vol. 81 (2010), pp.735-41.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. J.J. Pak of Hanyang University for the use of the induction furnace and the facilities at the Erica campus. Special appreciation is also warranted to POSCO technical research lab for support in the inclusion analysis and Mr. Sung Suk Jeong of Yonsei University for the SEM–EDS analysis. This study was partially supported by the Brain Korea 21 (BK21 PLUS) Project at the Creative Materials Division and by the Ministry of Trade, Industry and Energy (RCMS10044705, 2013-11-1079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Additional information

Manuscript submitted July 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J.Y., Kang, Y. & Sohn, I. Novel Application of Alkali Oxides in Basic Tundish Fluxes for Enhancing Inclusion Removal in 321 Stainless Steels. Metall Mater Trans B 45, 113–122 (2014). https://doi.org/10.1007/s11663-013-0013-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-0013-8

Keywords

Navigation