Skip to main content

Advertisement

Log in

A Study of Scrap Heating by Burners: Part II—Numerical Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A computational fluid dynamics code was developed to model the heating of a bed of porous steel scrap by combustion gases from a burner. The code accounted for nonuniform void fraction in the bed; turbulent, non-Darcian flow, heat transfer from the gas to the scrap; and radiation. The measured bed porosity values were used in the code. Because steel scrap pieces are very irregular in shape and size, the effective particle diameter was fitted to measurements made in a 1-m3 capacity furnace, as reported in part I. It was found that the lower porosity of the scrap was the most beneficial in increasing the efficiency of heat transfer to the scrap bed because the interfacial area is larger. The effect of particle size was much smaller. It was found that the configurations that increased the residence time or path length of the gases increased the efficiency. The measured porosity of the bed approached unity at the walls, so this provided an easy path for the gas to short-circuit the bed, which limited the effectiveness of decreasing the porosity to increase heat-transfer efficiency. Similarly, simulations of nonuniform scrap distributions reduced efficiency of heat transfer due to short circuiting. The implications of the findings for industrial operations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

ReP :

pore Reynolds number

Re:

Reynolds number

f:

fluid

s:

solid

β :

thermal expansion coefficient

φ :

local porosity

φ :

porosity from the far away from the boundary or wall

σ :

Stefan–Boltzmann constant

σ k :

k–ε model constant

σ ε :

k–ε model constant

ρ :

Fluid density

ε :

dissipation rate of turbulent kinetic energy

μ :

fluid viscosity

μ eff :

effective fluid viscosity

μ l :

laminar fluid viscosity

μ T :

turbulent fluid viscosity

ν f :

kinematic viscosity of the fluid

ΔP :

pressure gradient

ΔT :

temperature difference between the local and reference temperatures

a:

parameter

b:

parameter

A S :

surface area

C :

specific heat

C P(gas) :

specific heat of gas

C P(R) :

specific heat of refractory

C μ :

k–ε model constant

C k :

porous media k–ε model constant

d P :

particle diameter

E :

emissivity

F :

drag coefficient or Geometric factor

g :

acceleration due to gravity

G K :

volumetric rate of turbulent production

h v :

volumetric heat transfer coefficient

h fS :

heat transfer coefficient between fluid and solid

K :

permeability

K eff :

effective thermal conductivity

K s :

thermal conductivity of solid

K r :

radiative conductivity

K f :

thermal conductivity of fluid

K feff :

effective thermal conductivity of fluid

K seff :

effective thermal conductivity of solid

k :

turbulent kinetic energy

L :

characteristic length

q r :

heat flux due to radiation

S K :

source term in turbulent kinetic energy equation

S ε :

source term in the dissipation rate of turbulent kinetic energy equation

t :

time

T S :

solid temperature

T f :

fluid temperature

T flame :

flame temperature

T exhaust :

exhaust gas temperature

T ambient :

ambient temperature

u f :

fluid velocity in x-direction

v f :

fluid velocity in y-direction

V d :

Darcy velocity

V P :

pore velocity

w f :

fluid velocity in z-direction

References

  1. H. Darcy: Fontains Publiques de la Ville de Dijon, Librairie des Coros Imperiaux des Ponts et Chaussees et des Mines, Paris, France, 1856.

  2. R.A. Greenkorn: AIChE, 1981, vol. 27, pp. 529-45.

    Article  CAS  Google Scholar 

  3. N. Rudraiah and R.S. Balachandra: Appl. Sci. Res., 1983, vol. 40, no. 3, p. 223.

  4. M.H. Hamdan: Appl. Math. Comput., 1994, vol. 62, pp. 203-22.

    Article  Google Scholar 

  5. L.H.S. Roblee, R.M. Baird, and J.W. Tierney: AIChE, 1958, vol. 4, no. 4, pp. 460-4.

    Article  CAS  Google Scholar 

  6. R.F. Benenati and C.B. Brosilow: AIChE, 1962, vol. 8, no. 3, pp. 359-61.

    Article  CAS  Google Scholar 

  7. K. Vafai: J. Fluid Mech., 1984, vol. 147, pp. 233-59.

    Article  Google Scholar 

  8. K. Vafai, R.L. Alkire, and C.L. Tien: J. Heat Trans., 1986, vol. 107, pp. 642-7.

    Article  Google Scholar 

  9. C.T. Hsu and P. Cheng: Int. J. Heat Mass. Trans., 1990, vol. 33, no. 8, pp. 1587-97.

    Article  CAS  Google Scholar 

  10. P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan: Int. J. Heat Mass. Trans., 1997, vol. 40, no. 16, pp. 3955-67.

    Article  CAS  Google Scholar 

  11. C.C. Furnas: U.S. Bureau of Mines Bulletin, 1932, p. 261.

  12. A. Postelnicu and D.A.S. Rees: Int. J. Energ. Res., 2003, vol. 27, pp. 961-73.

    Article  Google Scholar 

  13. W. Pakdee and P. Rattanadecho: Appl. Therm. Eng., 2006, vol. 26, pp. 2316-26.

    Article  Google Scholar 

  14. X.B. Chen, P. Yu, S.H. Winoto, and H.T. Low: Numer. Heat Trans: Part A, 2007, vol. 52, pp. 377-97.

    Article  Google Scholar 

  15. N. Kladias and V. Prasad: J. Therm., 1991, vol. 5, pp. 560-76.

    Article  CAS  Google Scholar 

  16. N. Wakao, S. Kaguei, and T. Funazkri: Chem. Eng. Sci., 1979, vol. 34, pp. 325-36.

    Article  CAS  Google Scholar 

  17. C.C. Furnas: U.S. Bureau of Mines Bulletin, 1932, p. 261.

  18. B.I. Kitaev, Y.G. Yaroshenko, and V.D. Suchkov: Heat Exchange in Shaft Furnace, Pergamon Press, New York, NY, 1968.

  19. D. Guo and G.A. Irons: ICS Conference Proceedings, 2005, pp. 441-8.

  20. D. Guo and G.A. Irons: AISTech Proceedings, 2006, pp. 425-33.

  21. M.H.J. Pedras and M.J.S. de Lemos: Int. J. Heat Mass. Trans., 2001, vol. 44, pp. 1081-93.

    Article  Google Scholar 

  22. M.H.J. Pedras and M.J.S. de Lemos: J. Fluid Eng., 2001, vol. 123, pp. 941-7.

    Article  Google Scholar 

  23. P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan: Int. J. Heat Mass. Trans., 1997, vol. 40, no. 16, pp. 3955-67.

    Article  CAS  Google Scholar 

  24. K. Mandal: Ph.D Dissertation, McMaster University, Hamilton, Ontario, Canada, 2010.

  25. K. Hassan and S.A. Mohamed: Int. J. Heat Mass. Trans., 1970, vol. 13, pp. 1873-86.

    Article  CAS  Google Scholar 

  26. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, NY, 1980.

  27. A. Amiri and K. Vafai: Int. J. Heat Mass. Trans., 1994, vol. 37, pp. 939-54.

    Article  CAS  Google Scholar 

  28. R.F. Benenati and C.B. Brosilow: AIChE, 1962, vol. 8, no. 3, pp. 359-61.

    Article  CAS  Google Scholar 

  29. D.B. Spalding: Recent Advances in Numerical Methods in Fluids, 1980, vol. 1, pp. 139-69.

  30. G.H. Geiger and D.R. Poirier: Transport Phenomena in Materials Processing, Wiley, New York, NY, 1998.

  31. TECPLOT, Version 9.0.

Download references

Acknowledgment

The authors would like to thank the Steel Research Centre for supporting this work and ArcelorMittal Dofasco for providing scrap samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalesh Mandal.

Additional information

Manuscript submitted September 13, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, K., Irons, G.A. A Study of Scrap Heating by Burners: Part II—Numerical Modeling. Metall Mater Trans B 44, 196–209 (2013). https://doi.org/10.1007/s11663-012-9752-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9752-1

Keywords

Navigation