Skip to main content
Log in

Thermomechanical Behavior of Work Rolls During Warm Strip Rolling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model was developed to assess thermomechanical behavior of work rolls during warm rolling processes. A combined finite element analysis-slab method was first developed to determine thermal and mechanical responses of the strip being rolled under steady-state conditions, and then, the calculated roll pressure and temperature field were utilized as the governing boundary conditions for the thermomechanical problem of the work roll. Finally, the thermomechanical stresses within the work rolls were predicted by a thermoelastic finite element approach. The results of the model indicate that, in warm strip rolling, thermal and mechanical stresses developed in the work rolls are comparable, and thus, both thermal and mechanical aspects of the problem should be considered in such a problem. Besides, the model was shown to be capable of determining the effects of various rolling parameters on the thermomechanical behavior of the work rolls during warm rolling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.J.M. Too: International Journal for Numerical Methods in Engineering 1990 vol. 30, pp.1699-1718.

    Article  Google Scholar 

  2. C. Liu, P. Hartley, C. E. N. Sturgess and G. W. Rowe: International Journal of Mechanical Sciences, 1985 vol. 27, pp. 829-839.

    Article  Google Scholar 

  3. M. Pietrzyk and J. G. Lenard: International Journal for Numerical Methods in Engineering, 1990, vol. 30, pp. 1459-1469.

    Article  Google Scholar 

  4. W. B. Lai, T. C. Chen and C. I. Weng: Computational Mechanics, 1991, vol. 9, pp. 55-71.

    Article  Google Scholar 

  5. P. Gratacos, P. Montmitonnet, C. Fromholz, and J. L. Chenot: International Journal of Mechanical Sciences, 1992, vol. 34, pp. 195-210.

    Article  Google Scholar 

  6. A. A. Teseng, F. H. Lin, A. S. Gunderia, and D. S. Ni: Metall. Trans 1990, vol. 20A, pp. 2305–2320.

    Google Scholar 

  7. S. M. Hwang, C. G. Sun, S. R. Ryoo, and W. J. Kwak: Computer Methods in Applied Mechanics and Engineering, 2002, vol. 191, pp. 4015-4033.

    Article  Google Scholar 

  8. L. M. Galantucci and L. Tricarico: Journal of Materials Processing Technology, 1999, vols. 92-93, pp.494-501.

    Article  Google Scholar 

  9. R. S. Prakash, P. M. Dixit, and G. K. Lal, Journal of Materials Processing Technology 1995, vol.52, pp. 338-358.

    Article  Google Scholar 

  10. A. F. M. Arif, O. Khan and A. K. Sheikh: Jounrnal of Material Processing and Technology 2004, vol. 147, pp. 255–267.

    Article  Google Scholar 

  11. M. T. Wang, X. L. Zang, X. T. Li and F. S. Du: International Journal of Iron and Steel Research, 2007, vol. 14, pp. 30-36.

    Article  CAS  Google Scholar 

  12. M. P. Phaniraj, B. B. Behera and A. K. Lahiri, Journal of Materials Processing Technology, 2005, vol.170, pp. 323-335.

    Article  CAS  Google Scholar 

  13. H. Sheikh: Applied Mathematical Modelling, 2009, vol. 33, pp. 2187–2195.

    Article  Google Scholar 

  14. S. Serajzadeh: Materials Science and Engineering A, 2004, Vol. 371, pp. 318-323.

    Article  Google Scholar 

  15. A. Sonboli and S. Serajzadeh: Materials Science and Technology, 2010, vol. 26, 343–351.

    Article  CAS  Google Scholar 

  16. D.F. Chang: Journal of Materials Processing Technology, 1999, vol. 94, pp. 45–51.

    Article  Google Scholar 

  17. F. D. Fischer, W. E. Screiner, E. A. Werner, and C. G. Sun: Journal of Materials Processing Technology, 2004, vol. 150, pp. 263–269.

    Article  Google Scholar 

  18. C. G. Sun, C. S. Yun, J. S. Chung, and S. M. Hwang: Metallurgical and Materials Transactions 1996, vol. 29A, pp. 1998-2407.

    Google Scholar 

  19. J. C. Heinrich and D. W. Pepper, Intermediate finite element method- Fluid flow and Heat Transfer Applications, Taylor & Francis, Philadelphia, 1999.

    Google Scholar 

  20. P.M. Dixit and U.S. Dixit. Modelling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods. Springer, U.K., 2008.

  21. P.L. Charpentier, B. C. Stone, S.C. Ernst, and J.F. Thomas: Metall. Trans., 1984, vol. 17A, pp. 1986-2227.

    Google Scholar 

  22. R. Hill: Journal of the Mechanics and Physics of solids, 1963, vol. 11, pp. 305-326.

    Article  Google Scholar 

  23. S.J Chen and A.A. Tseng: Int. J. Heat Fluid Flow 1992, vol. 13, pp. 358–69.

    Article  CAS  Google Scholar 

  24. J. D. Lee, M.T. Manzari, Y.L. Shen, and W. Zeng: Trans. ASME J. Manuf. Sci. Eng. 2000, vol. 122, pp. 706–16.

  25. F.L. Stasa. Applied Finite Element Analysis for Engineering. Japan CBS Publishing, 1985.

  26. J. Chakrabarty, Theory of Plasticity, McGraw-Hill, New York, 1987.

    Google Scholar 

  27. V. B. Ginzburg, Flat rolled steel processes: Advanced technologies, CRC Press, US, 2009.

    Book  Google Scholar 

  28. Metals Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials: 10th ed, ASM International, 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Serajzadeh.

Additional information

Manuscript submitted April 15, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalili, L., Serajzadeh, S. & Koohbor, B. Thermomechanical Behavior of Work Rolls During Warm Strip Rolling. Metall Mater Trans B 43, 1638–1648 (2012). https://doi.org/10.1007/s11663-012-9714-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9714-7

Keywords

Navigation