Skip to main content
Log in

Intermittent Behavior Caused by Surface Oxidation in a Liquid Metal Flow Driven by a Rotating Magnetic Field

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The focus of the experimental and numerical study presented in this article is on the bulk flow within a swirling liquid metal column driven by a rotating magnetic field (RMF), whereas the free surface of the melt was covered by a distinct oxide layer. Flow measurements revealed an anomalous behavior of the flow: Pronounced oscillations of both the primary swirling and the secondary recirculating flow occur spontaneously. This peculiarity can be attributed to the influence of the oxide layer at the surface of the metal. The motion of the covering layer is governed by the strength of the fluid flow and the properties of the layer, and it might exhibit three different states of motion: permanent rotation, intermittent rotation, or the quiescent state. The regime of an intermittent oxide layer rotation reveals a striking influence on the bulk flow of the liquid metal. The amplitude of the velocity oscillations observed seems to be at least one order of magnitude larger than those of turbulent fluctuations in a steady RMF-driven flow. The essential features of the phenomenon observed were reproduced by a simple numerical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. P.A. Davidson: An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, NY, 2001, pp. 285-300.

    Book  Google Scholar 

  2. M. Dubke, K.-H. Tacke, K.-H. Spitzer, and K. Schwerdtfeger: Metall. Trans. B, 1988, vol. 19B, pp. 595-602.

    Article  CAS  Google Scholar 

  3. C. Vives: Metall. Trans. B, 1993, vol. 24B, pp. 493-510.

    Article  CAS  Google Scholar 

  4. F.-C. Chang, J.R. Hull, and L. Beitelman: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1129-37.

    Article  CAS  Google Scholar 

  5. Yu. M. Gelfgat: J. Cryst. Growth, 1999, vols. 198-99, pp. 165–69.

  6. P.A. Nikrityuk, K. Eckert, and R. Grundmann: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 94-111.

    Article  CAS  Google Scholar 

  7. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, and Y. Fautrelle: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 193-208.

    Article  CAS  Google Scholar 

  8. B. Willers, S. Eckert, P.A. Nikrityuk, D. Räbiger, J. Dong, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 304-16.

    Article  CAS  Google Scholar 

  9. J. Priede and Yu. M. Gelfgat: Magnetohydrodynamics, 1996, vol. 32, pp. 249–56.

  10. I. Grants and G. Gerbeth: J. Fluid Mech., 2001, vol. 431, pp. 407-26.

    Article  Google Scholar 

  11. I. Grants and G. Gerbeth: J. Fluid Mech., 2002, vol. 463, pp. 229-40.

    Article  Google Scholar 

  12. L.-M. Wittkowski and P. Marty: Eur. J. Mech. B/Fluids, 1998, vol. 17, pp. 239-54.

    Article  Google Scholar 

  13. K.-H. Spitzer, M. Dubke, and K. Schwerdtfeger: Metall. Mater. Trans. B, 1986, vol. 17B, pp. 119-31.

    Google Scholar 

  14. P.A. Nikrityuk, M. Ungarish, K. Eckert, and R. Grundmann: Phys. Fluids, 2005, vol. 17, p. 067101.

    Article  Google Scholar 

  15. P.A. Nikrityuk, S. Eckert, and K. Eckert: Eur. J. Mech. B/Fluids, 2008, vol. 27, pp. 177-201.

    Article  Google Scholar 

  16. J. Stiller, K. Frana, and A. Cramer: Phys. Fluids, 2006, vol. 18, p. 074105.

    Article  Google Scholar 

  17. M. Hainke, J. Friedrich, and G. Müller: J. Mater. Sci., 2004, vol. 39, pp. 2011-15.

    Article  CAS  Google Scholar 

  18. P.A. Davidson: J. Fluid Mech., 1992, vol. 245, pp. 669-99.

    Article  CAS  Google Scholar 

  19. S. Eckert, A. Cramer, and G. Gerbeth: Magnetohydrodynamics - Historical Evolution and Trends, S. Molokov, R. Moreau, and H.K. Moffatt, eds., Springer, Berlin, Germany, 2007, pp. 275–94.

  20. A. Cramer, C. Zhang, and S. Eckert: Flow Meas. Instrum., 2004, vol. 15, pp. 145-53.

    Article  CAS  Google Scholar 

  21. D. Räbiger, S. Eckert, and G. Gerbeth: Exp. Fluids, 2010, vol. 48, pp. 233-44.

    Article  Google Scholar 

  22. S. Eckert, P.A. Nikrityuk, D. Räbiger, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 977-88.

    Article  CAS  Google Scholar 

  23. X. Wang, Y. Fautrelle, J. Etay, and R. Moreau: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 82-90.

    Article  CAS  Google Scholar 

  24. K.-H. Tacke and K. Schwerdtfeger: Stahl und Eisen, 1979, vol. 99, pp. 7-12.

    Google Scholar 

  25. P.A. Davidson and J.C.R. Hunt: J. Fluid Mech., 1987, vol. 185, pp. 67-106.

    Article  CAS  Google Scholar 

  26. I. Grants, C. Zhang, S. Eckert, and G. Gerbeth: J. Fluid Mech., 2008, vol. 616, pp. 135-52.

    Article  Google Scholar 

  27. P.A. Davidson, D. Kinnear, R.J. Lingwood, D.J. Short, and X. He: Eur. J. Mech. B/Fluids, 1999, vol. 18, pp. 693-711.

    Article  Google Scholar 

  28. L.P. Gorbachev, N.V. Nikitin, and A.L. Ustinov: Magnetohydrodynamics, 1974, vol. 10, pp. 32-42.

    Google Scholar 

  29. K. Liffman: J. Comp. Phys., 1996, vol. 128, pp. 254-58.

    Article  Google Scholar 

  30. C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang: Spectral Methods in Fluid Dynamics, Springer, New York, NY, 1988, p. 525.

    Google Scholar 

  31. G.E. Forsythe, M.A. Malcolm, and C.B. Moler: Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  32. P.A. Davidson: J. Fluid Mech., 1989, vol. 209, pp. 35-55.

    Article  Google Scholar 

  33. P.A. Nikrityuk, K. Eckert, and R. Grundmann: Magnetohydrodynamics, 2004, vol. 40, pp. 127-46.

    Google Scholar 

  34. J. Partinen, J. Szekely, C. Vives, and L. Holappa: ISIJ Int., 1995, vol. 35, pp. 292-301

    Article  Google Scholar 

  35. J.K. Roplekar and J.A. Dantzig: Int. J. Cast Metals Res., 2001, vol. 14, pp. 79-95.

    CAS  Google Scholar 

  36. G. Zimmermann, V.T. Vitusevych, and L. Sturz: Mater. Sci. Forum, 2010, vol. 649, pp. 249-54.

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by the Deutsche Forschungsgemeinschaft (DFG) through the SFB 609 “Electromagnetic Flow Control in Metallurgy, Crystal Growth and Electrochemistry.” This support is acknowledged gratefully by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Eckert.

Additional information

Manuscript submitted February 17, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Shatrov, V., Priede, J. et al. Intermittent Behavior Caused by Surface Oxidation in a Liquid Metal Flow Driven by a Rotating Magnetic Field. Metall Mater Trans B 42, 1188–1200 (2011). https://doi.org/10.1007/s11663-011-9538-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9538-x

Keywords

Navigation