Skip to main content
Log in

Increasing Potlife of Hall–Héroult Reduction Cells Through Multivariate On-Line Monitoring of Preheating, Start-Up, and Early Operation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Aluminum is produced inside metallurgical reactors known as pots that are replaced at the end of their service life. New pots are preheated, started, and then enter a period known as early operation in which different control strategies are used before entering regular operation. It is known that how preheating, start-up, and early operation are performed can damage a well-designed pot and lead to a shorter service life. However, the impact of these phases with respect to potlife is not well documented quantitatively. In this article, multivariate statistical analysis techniques are used to investigate the impact of pot-to-pot variations during the three phases. A partial least squares regression model is first proposed for predicting potlife, within an error of 90 days, using process data gathered until the end of early operation. This model is also used to identify those variables having the greatest influence on potlife. Finally, multivariate statistical process control charts are proposed to monitor the three steps efficiently. These charts have a low false-alarm rate and can help find the root cause of abnormal operation occurring during the early phases. A few examples are used to illustrate how operators and engineers could use the charts to maintain consistent early operation and help improve mean potlife. Nomenclature: In this article, bold characters are used to identify vectors (bold lowercase), matrices (bold capital), and three-dimensional arrays (bold, underlined capital). Lowercase italics letters are used to define indices. Al—Aluminium; Al2O3—Alumina; C—Carbon; CO2—Carbon dioxide; kA—kilo-Amperes; Na—Sodium; Na3AlF6—Cryolite; V—Volt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Grjotheim and H. Kvande: Introduction to Aluminium Electrolysis: Understanding the Hall-Héroult Process, 2nd ed., Aluminium-Verlag, Düsseldorf, Germany, 1993, p. 22.

    Google Scholar 

  2. K. Grjotheim and H. Kvande: Introduction to Aluminium Electrolysis: Understanding the Hall-Héroult Process, 2nd ed., Aluminium-Verlag, Düsseldorf, Germany, 1993, pp. 26–33.

    Google Scholar 

  3. J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, and A. Sterten: Aluminium Electrolysis: Fundamentals of the Hall-Héroult Process, 3rd ed., Aluminium-Verlag, Düsseldorf, Germany, 2001, p. 237.

    Google Scholar 

  4. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, pp. 101–10.

    Google Scholar 

  5. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, p. 111.

    Google Scholar 

  6. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, p. 90.

    Google Scholar 

  7. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, p. 80–87.

    Google Scholar 

  8. D. Richard, G. D’Amours, M. Fafard, A. Gakwaya, and M. Désilets: Light Metals 2005, TMS, Warrendale, PA, 2005, pp. 733–38.

    Google Scholar 

  9. C. Zangiacomi, V.C. Pandolfelli, L. Paulino, S.J. Lindsay, and H. Kvande: Light Metals 2005, TMS, Warrendale, PA, 2005, pp. 333–36.

    Google Scholar 

  10. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, p. 47.

    Google Scholar 

  11. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, pp. 47–58.

    Google Scholar 

  12. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, pp. 59–61.

    Google Scholar 

  13. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, pp. 101–14.

    Google Scholar 

  14. M. Sorlie and H.A. Oye: Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf, Germany, 1989, pp. 63.

    Google Scholar 

  15. G. D’Amours, M. Fafard, A. Gakwaya, and A.A. Mirchi: Light Metals 2003, TMS, Warrendale, PA, 2003, pp. 633–39.

    Google Scholar 

  16. D. Richard: Ph.D. Dissertation, Université Laval, Québec, Canada, 2004.

  17. C. Zangiacomi, V.C. Pandolfelli, and L. Paulino: Proc. Int. Symp. on Aluminium, Montréal, Canada, 2006, pp. 653–66.

  18. M.R. Dunn and Q.M.I. Galadari: Light Metals 1997, TMS, Warrendale, PA, 1997, pp. 247–51.

    Google Scholar 

  19. P. Nomikos and J.F. MacGregor: Technometrics, 1995, vol. 37, pp. 41–59.

    Article  MATH  Google Scholar 

  20. P. Geladi and B.R. Kowalski: Anal. Chim. Acta, 1986, vol. 185, pp. 1–17.

    Article  CAS  Google Scholar 

  21. S. Wold, K. Esbensen, and P. Geladi: Chemometr. Intell. Lab. Syst., 1987, vol. 2, pp. 37–52.

    Article  CAS  Google Scholar 

  22. A. Höskuldsson: J. Chemom., 1988, vol. 2, pp. 211–28.

    Article  Google Scholar 

  23. J.E. Jackson: A User’s Guide to Principal Component Analysis, Wiley, New York, NY, 1991, p. 592.

    Book  Google Scholar 

  24. S. Wold, M. Sjöström, and L. Eriksson: Chemometr. Intell. Lab. Syst., 2001, vol. 58, pp. 109–30.

    Article  CAS  Google Scholar 

  25. T. Kourti and J.F. MacGregor: Chemometr. Intell. Lab. Syst., 1995, vol. 28, pp. 3–21.

    CAS  Google Scholar 

  26. C. Duchesne, T. Kourti, and J.F. MacGregor: AIChE J., 2002, pp. 2890–901.

  27. T. Kourti: IEEE Control Syst. Mag., 2002, vol. 22 no. 5, pp. 10–25.

    Article  Google Scholar 

  28. T. Kourti: Int. J. Adapt. Control Signal Process, 2005, vol. 19, pp. 213–46.

    Article  MATH  MathSciNet  Google Scholar 

  29. I. Miletic, S. Quinn, M. Dudzic, V. Vaculik, and M. Champagne: J. Process Control, 2004, vol. 14, pp. 821–36.

    Article  CAS  Google Scholar 

  30. J.F. MacGregor, H. Yu, S.G. Munoz, and J. Flores-Cerrillo: Comput. Chem. Eng., 2005, vol. 29, pp. 1217–23.

    Article  CAS  Google Scholar 

  31. S. Wold: Technometrics, 1978, vol. 20, pp. 397–405.

    Article  MATH  Google Scholar 

  32. J.A. Westerhuis, T. Kourti, and J.F. MacGregor: J. Chemom., 1999, vol. 13, pp. 397–413.

    Article  CAS  Google Scholar 

  33. I.G. Chong and C.H. Jun: Chemometr. Intell. Lab. Syst., 2005, vol. 78, pp. 103–12.

    Article  CAS  Google Scholar 

  34. J.A. Westerhuis, S.P. Gurden, and A.K. Smilde: Chemometr. Intell. Lab. Syst., 2000, vol. 51, pp. 95–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this research was financed by the Fonds québécois de la recherche sur la nature et les technologies by the intermediary of the Aluminium Research Centre—REGAL and the National Science and Engineering Research Council. The authors also would like to thank Alcoa Inc. for funding and granting permission to publish these results. Special thanks also go to the Alcoa Deschambault Potroom Technical Staff for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Duchesne.

Additional information

Nomenclature: In this article, bold characters are used to identify vectors (bold lowercase), matrices (bold capital), and three-dimensional arrays (bold, underlined capital). Lowercase italics letters are used to define indices.

Al—Aluminium; Al2O3—Alumina; C—Carbon; CO2—Carbon dioxide; kA—kilo-Amperes; Na—Sodium; Na3AlF6—Cryolite; V—Volt

Manuscript submitted June 23, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessier, J., Duchesne, C., Tarcy, G.P. et al. Increasing Potlife of Hall–Héroult Reduction Cells Through Multivariate On-Line Monitoring of Preheating, Start-Up, and Early Operation. Metall Mater Trans B 41, 612–624 (2010). https://doi.org/10.1007/s11663-010-9359-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9359-3

Keywords

Navigation