Skip to main content
Log in

Carbothermic Reduction of Chromite Ore Under Different Flow Rates of Inert Gas

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The reduction of chromite ore with carbon has been studied extensively in many laboratories. Inert gases have been used in these investigations to control the experimental conditions. However, little information is available in the literature on the influence of the gas flow rate on the rate of reduction. Experiments were carried out to study the influence of the flow rate of inert gas on the reducibility of chromite ore. The experiments showed that the rate of reduction increased with the increasing flow rate of argon up to an optimum flow rate. At higher flow rates, the rate of reduction decreased. The influence of the proportion of reductant on the extent of reduction depended on the rate of flow rate of inert gas. The experimental results are interpreted on the basis of a model that postulates that the mechanism of reduction changes with the flow rate of argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.S. Sundar Murti and V. Seshadri: Trans. ISIJ, 1982, vol. 22, pp. 925–33.

    CAS  Google Scholar 

  2. N.S. Sundar Murti and V. Seshadri: Trans. IIM, 1985, vol. 38, no. 5, pp. 423–25.

    CAS  Google Scholar 

  3. R.J. Fruehan: Metall. Trans. A, 1977, vol. 8B, pp. 429–33.

    CAS  Google Scholar 

  4. C.P.J. Van Vuuren, J.J. Bodenstein, M. Sciarone, and P. Kestens: INFACON 6, Proc. 6 th International Ferro Alloy Conference, SAIMM, Johannesburg, South Africa, 1992, pp. 51–55.

  5. N.A. Barcza, P.R. Jochens, and D.D. Howat: Proc. 29 th Electric Furnace Conference, Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Littleton, CO, 1972, pp. 88–93.

  6. P. Weber and R.H. Eric: Metall. Trans. B, 1993, vol. 24B, pp. 987–95.

    Article  CAS  Google Scholar 

  7. W.J. Rankin: Trans. Inst. Min. Metall. C, 1979, vol. 88, C107–13.

    CAS  Google Scholar 

  8. H.G. Vazarlis and A. Lekatou: Ironmaking Steelmaking, 1993, vol. 20, no. 1, pp. 42–53.

    CAS  Google Scholar 

  9. A. Lekatou and R.D. Walker: Ironmaking Steelmaking, 1995, vol. 22, no. 5, pp. 393–404.

    CAS  Google Scholar 

  10. A. Lekatou and R.D. Walker: Ironmaking Steelmaking, 1995, vol. 22, no. 5, pp. 378–92.

    CAS  Google Scholar 

  11. R.H. Nafziger, J.E. Tress, and J.I. Paige: Metall. Trans. B, 1979, vol. 10B, pp. 5–14.

    Article  CAS  Google Scholar 

  12. R.H. Nafziger, P.E. Sanker, J.E. Tress, and R.A. McCune: Ironmaking Steelmaking, 1982, vol. 9, no. 6, pp. 267–77.

    Google Scholar 

  13. R.G. Reddy, R.B. Inturi, and M.V. Klein: EPD Congress, 1998, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 697–715.

  14. K.P.D. Perry, C.W.P. Finn, and R.P. King: Metall. Trans. B, 1988, vol. 19B, pp. 677–84.

    Article  CAS  Google Scholar 

  15. O. Soykan, R.H. Eric, and R.P. King: Metall. Trans. B, 1991, vol. 22B, pp. 53–63.

    Article  CAS  Google Scholar 

  16. O. Soykan, R.H. Eric, and R.P. King: Metall. Trans. B, 1991, vol. 22B, pp. 801–10.

    Article  CAS  Google Scholar 

  17. S. Xu and W. Dai: INFACON 6, Proc. 6 th Int. Ferro Alloy Conf., Cape Town, SAIMM, Johannesburg, South Africa, 1992, pp. 87–92.

  18. A. Lekatou and R.D. Walker: Ironmaking Steelmaking, 1997, vol. 24, no. 2, pp. 133–43.

    CAS  Google Scholar 

  19. D. Neuschutz: INFACON 6, Proc. 6 th Int. Ferro Alloys Congress, SAIMM, Johannesburg, South Africa, 1992, pp. 65–70.

  20. Y.L. Ding and N.A. Warner: Ironmaking Steelmaking, 1997, vol. 24, no. 4, pp. 283–87.

    CAS  Google Scholar 

  21. Y.L. Ding and N.A. Warner: Ironmaking Steelmaking, 1997, vol. 24, no. 3, pp. 224–29.

    CAS  Google Scholar 

  22. H.V. Duong and R.F. Johnston: Ironmaking Steelmaking, 2000, vol. 27, no. 3, pp. 202–06.

    Article  CAS  Google Scholar 

  23. Y.L. Ding, N.A. Warner, and A.J. Merchant: Scand. J. Metall., 1997, vol. 26B, pp. 55–63.

    Google Scholar 

  24. S. Fukagawa and T. Shimoda: Trans. ISIJ, 1987, vol. 27, pp. 609–16.

    CAS  Google Scholar 

  25. H.-K. Chen: Scand. J. Metall., 2001, vol. 30, pp. 292–96.

    Article  Google Scholar 

  26. S.P. Mehrotra and V. Srinivasan: Trans. Min. Metall., 1994, vol. 103, pp. C97–104.

    CAS  Google Scholar 

  27. M.-F. Rau, D. Rieck, and J.W. Evans: Metall. Trans. B, 1987, vol. 18B, pp. 257–88.

    Article  CAS  Google Scholar 

  28. R.J. Freuhan: Metall. Trans. B, 1977, vol. 8B, pp. 279–86.

    Article  Google Scholar 

  29. M. Yasterboff, O. Ostrovski, and S. Ganguly: ISIJ Int., 2003, vol. 43, no. 2, pp. 161–65.

    Article  Google Scholar 

  30. Y.K. Rao: Metall. Trans., 1971, vol. 2, pp. 1439–47.

    CAS  Google Scholar 

  31. B.G. Baldwin: J. Iron Steel Inst., 1955, pp. 30–36.

  32. M.B. Mourao, H.A. Ishll, and J.D.T. Capocchi: EPD Congress Proc. Symp., TMS Annual Meeting, The Minerals, Metals and Materials Society, Warrendale, PA, 1994, pp. 1073–82.

  33. D. Chakraborty, S. Ranganathan, and S.N. Sinha: Met., Mater. Process., 2004, vol. 16, no. 2, pp. 199–208.

    CAS  Google Scholar 

  34. D. Chakraborty: Ph.D. Dissertation, Ranchi University, Jharkhand, India, 2004.

  35. N. Kanari and I. Gaballah: Light Metals Proc. Technical Sessions TMS Aluminium Committee, 127 th TMS Annual Technical Meeting, The Minerals Metals and Materials Society, Warrendale, PA, 1998, pp. 1333–41.

  36. M.A. Qayyum and D.A. Reeve: Can. Metall. Q., 1976, vol. 15, no. 3, pp. 193–200.

    CAS  Google Scholar 

  37. M.J. Niayesh and R.J. Dippenaar: INFACON 6, 1992, pp. 57–63.

Download references

Acknowledgment

The authors are grateful to the Department of Science and Technology for financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ranganathan.

Additional information

Manuscript submitted December 25, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, D., Ranganathan, S. & Sinha, S. Carbothermic Reduction of Chromite Ore Under Different Flow Rates of Inert Gas. Metall Mater Trans B 41, 10–18 (2010). https://doi.org/10.1007/s11663-009-9297-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9297-0

Keywords

Navigation