Skip to main content
Log in

Effect of Solidification Rate and Heat Treating on the Microstructure and Tensile Behavior of an Aluminum-Copper Alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An aluminum-copper alloy of the A206 type was melt and cast in molds that promote a thermal gradient during solidification to study the effects that solidification rate exerts on the microstructure of the material. The stress-strain characteristics of heat-treated samples were related to microstructural parameters. The reactions occurring during solidification and cooling were detected and identified by means of thermal analyses. The microstructure of the material was assessed by measuring the secondary dendrite arm spacing, grain size, and porosity. It was found that these parameters increase as the solidification rate decreases. The material was heat treated to T4 and T7 conditions and tested in tension. The stress-strain curves were analyzed to determine the yield and ultimate strengths, as well as the strain to failure and that at which the ultimate strength was achieved. It was found that these properties are enhanced by microstructural refining in either testing condition. It was also found that porosity increased due to dissolution of copper-rich particles during heat treating. The best combination of strength and ductility were achieved in the T4 condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W.E. Kosak: U.S. Patent 6,648,351, 2003

  2. W.E. Kosak: U.S. Patent 6,742,808, 2004

  3. I.J. Polmear: Light Alloys, Metallurgy of the Light Metals, Edward Arnold, London, 1980

    Google Scholar 

  4. L. Bäckerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, vol. 2, Foundry Alloys, AFS/Skanaluminium, Des Plains, IL, 1990

  5. J. Campbell: Castings, 2nd ed., Butterworth-Heinemann, Oxford, United Kingdom, 2003

    Google Scholar 

  6. R. Colás, E. Velasco, and S. Valtierra: in Castings, Handbook of Aluminum, vol. 1, Physical Metallurgy and Processes, G.E. Totten and D.S. MacKenzie, eds., M. Dekker, New York, NY, 2003, pp. 591–641

  7. A. Keaney and E.L. Rooy: ASM Handbook, vol. 2, Properties and Selection of Nonferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 123–51

  8. A.L. Keaney: ASM Handbook, vol. 2, Properties and Selection of Nonferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 152–77

  9. E.L. Rooy: ASM Handbook, vol. 15, Castings, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 743–70

  10. E. Velasco, J. Talamantes, S. Cano, S. Valtierra, J.F. Mojica, R. Colás: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 773–78

    Article  CAS  Google Scholar 

  11. R. Colás, A. Rodríguez, J. Talamantes, S. Valtierra: Int. J. Cast Met. Res., 2004, vol. 17, pp. 332–38

    Article  Google Scholar 

  12. G.F. Vander Voort: Microsc. Today, 2005, vol. 13 (6), pp. 22–27

    CAS  Google Scholar 

  13. Standard Test Methods of Tension Testing Wrought and Cast Aluminum and Magnesium Alloy Products (Metric), ASTM B557M-94, ASTM International, West Conshohocken, PA, 1994

  14. Standard Test Methods for Tension Testing of Metallic Materials (Metric), ASTM E8M-99, ASTM International, West Conshohocken, PA, 1999

  15. J.L. Murray: Int. Met. Rev., 1985, vol. 30, pp. 211–33

    CAS  Google Scholar 

  16. M.I. Pope, M.J. Judd: Differential Thermal Analysis, Heyden, London, 1977

    Google Scholar 

  17. H. Biloni, W.J. Boettinger: Physical Metallurgy, 4th ed., R.W. Cahn, P. Haasen, eds., North Holland, Amsterdam, 1996, pp. 669–842

    Google Scholar 

  18. M.C. Flemmings, T.Z. Kattamis, B.P. Bardes: AFS Trans., 1981, vol. 91, pp. 501–06

    Google Scholar 

  19. J.E. Spinelli, D.M. Rosa, I.L. Ferreira, A. García: Met. Sci. Eng. A, 2004, vol. 382, pp. 271–82

    Google Scholar 

  20. A.-E.M. Assar: J. Mater. Proc. Technol., 1999, vol. 86, pp. 146–51

    Article  Google Scholar 

  21. T. Din, A.K.M.B. Rashid, J. Campbell: Mater. Sci. Technol., 1996, vol. 12, pp. 269–75

    CAS  Google Scholar 

  22. C.H. Cáceres, T. Din, A.K.M.B. Rashid, J. Campbell: Mater. Sci. Technol., 1999, vol. 12, pp. 711–16

    Google Scholar 

  23. C.H. Cáceres: J. Mater. Eng. Perf., 2000, vol. 9, pp. 215–21

    Article  Google Scholar 

  24. C.H. Cáceres, M. Makhlouf, D. Apelian, L. Wang: J. Light Met., 2001, vol. 1, pp. 51–59

    Article  Google Scholar 

  25. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, H.W. Doty, S. Valtierra: Mater. Sci. Eng. A, 2004, vol. 367, pp. 96–110

    Article  Google Scholar 

  26. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, H.W. Doty, S. Valtierra: Mater. Sci. Eng. A, 2004, vol. 367, pp. 111–22

    Article  Google Scholar 

  27. R.E. Stoltz, R.M. Pelloux: Metall. Trans A, 1976, vol. 7A, pp. 1295–1306

    ADS  CAS  Google Scholar 

  28. P.G. McCormick: Scripta Metall., 1981, vol. 15, pp. 441–44

    Article  CAS  Google Scholar 

  29. J.W. Martin: Micromechanisms in Particle Hardened Alloys, Cambridge University Press, Cambridge, United Kingdom, 1980

    Google Scholar 

  30. M. Drouzy, S. Jacob, M. Richard: AFS Int. Cast. Met. J., 1980, vol. 5, pp. 43–50

    CAS  Google Scholar 

  31. S.K. Sigworth and C.H. Cáceres: AFS Trans., 2004, vol. 112, pp. 372–86

  32. R. Torres, J. Esparza, E. Velasco, S. García-Luna, R. Colás: Int. J. Microstruct. Mater. Prop., 2006, vol. 1, pp. 129–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Colás.

Additional information

Manuscript submitted May 19, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talamantes-Silva, M., Rodríguez, A., Talamantes-Silva, J. et al. Effect of Solidification Rate and Heat Treating on the Microstructure and Tensile Behavior of an Aluminum-Copper Alloy. Metall Mater Trans B 39, 911–919 (2008). https://doi.org/10.1007/s11663-008-9204-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9204-0

Keywords

Navigation