Skip to main content
Log in

Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO2 and wüstite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wüstite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wüstite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wüstite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (>1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K.N. Pargeter, R.H. Hanewald, D.E. Dombrowski: Conserv. Recycl., 1985, vol. 8, pp. 363–75

    Article  CAS  Google Scholar 

  2. O.M. Fortini: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2004

  3. S. Sun, W.-K. Lu: ISIJ Int., 1993, vol. 33 (10), pp. 1062–69

    Article  CAS  Google Scholar 

  4. S. Sun, W.-K. Lu: ISIJ Int., 1999, vol. 39 (2), pp. 130–38

    Article  CAS  MathSciNet  Google Scholar 

  5. E.T. Turkdogan, J.V. Vinters: Carbon, 1969, vol. 7, pp. 101–17

    Article  CAS  Google Scholar 

  6. E.T. Turkdogan, J.V. Vinters: Carbon, 1970, vol. 8, pp. 39–53

    Article  CAS  Google Scholar 

  7. Y.K. Rao: Chem. Eng. Sci., 1974, vol. 29, pp. 1435–45

    Article  CAS  Google Scholar 

  8. K. Otsuka, D. Kunii: J. Chem. Eng. Jpn., 1969, vol. 2, pp. 46–50

    Article  CAS  Google Scholar 

  9. R.J. Fruehan: Metall. Trans. B, 1977, vol. 8B, pp. 279–86

    Article  ADS  CAS  Google Scholar 

  10. C.E. Seaton, J.S. Foster, J. Velasco: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 490–96

    CAS  Google Scholar 

  11. C. Bryk, W.-K. Lu: Ironmaking and Steelmaking, 1986, vol. 13, pp. 70–75

    CAS  Google Scholar 

  12. B.-H. Huang, W.-K. Lu: ISIJ Int., 1993, vol. 33 (10), pp. 1056–61

    Article  Google Scholar 

  13. O.M. Fortini, R.J. Fruehan: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 865–72

    Article  CAS  Google Scholar 

  14. E.T. Turkdogan, R.G. Olsson, J.V. Vinters: Carbon, 1970, vol. 8, pp. 545–64

    Article  CAS  Google Scholar 

  15. S. Dutta, C.Y. Wen, R.J. Belt: Ind. Eng. Chem. Res., Process Des. Dev., 1977, vol. 16, pp. 20–30

    Article  CAS  Google Scholar 

  16. P.L. Walker, R.J. Foresti Jr., C.C. Wright: Ind. Eng. Chem. Res., 1953, vol. 45, pp. 1704–10

    Google Scholar 

  17. T. Adschiri, T. Shiraha, K. Ogawa, and T. Furusawa: Proc. Int. Conf. Coal Sci., 1985, pp. 289–92

  18. J. Gadsby, F.J. Long, P. Sleightholm, K.W. Sykes: Proc. R. Soc. London, Ser. A, Math. Phys. Sci., 1948, vol. 193 (1034), pp. 357–76

    Article  ADS  CAS  Google Scholar 

  19. A.E. Reif: J. Phys. Chem., 1952, vol. 36, pp. 785–88

    Article  Google Scholar 

  20. E.T. Turkdogan, J.V. Vinters: Metall. Trans., 1972, vol. 3, pp. 1561–74

    Article  CAS  Google Scholar 

  21. R.M. German: Sintering Theory and Practice, John Wiley and Sons, Inc., New York, NY, 1996

    Google Scholar 

  22. G.E. Hoffman, K.J. Shoop, and K. Tokuda: Ironmaking Conf. Proc., 1999, pp. 367–73

  23. I. Sohn: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2005

  24. R.H. Tien, E.T. Turkdogan: Metall. Trans. B, 1977, vol. 8B, pp. 305–13

    Article  ADS  CAS  Google Scholar 

  25. P.L. Walker, F. Rusinko, L.G. Austin: Adv. Catal. Relat. Subj., 1959, vol. 11, pp. 133–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the member companies of the Center for Iron and Steel Making Research (CISR) for the financing of this research. Also, special thanks to Dr. O.M. Fortini for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Halder.

Additional information

Manuscript submitted April 4, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halder, S., Fruehan, R. Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants. Metall Mater Trans B 39, 784–795 (2008). https://doi.org/10.1007/s11663-008-9200-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9200-4

Keywords

Navigation