Skip to main content
Log in

Effect of residual magnesium content on thermal fatigue cracking behavior of high-silicon spheroidal graphite cast iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study investigates the thermal fatigue cracking behavior of high-silicon spheroidal graphite (SG) cast iron. Irons with different residual magnesium contents ranging from 0.038 to 0.066 wt pct are obtained by controlling the amount of spheroidizer. The repeated heating/cooling test is performed under cyclic heating in various temperatures ranging from 650 °C to 800 °C. Experimental results indicate that the thermal fatigue cracking resistance of high-silicon SG cast iron decreases with increasing residual magnesium content. The shortest period for crack initiation and the largest crack propagation rate of the specimens containing 0.054 and 0.060 wt pct residual magnesium contents are associated with heating temperatures of 700 °C and 750 °C. Heating temperatures outside this range can enhance the resistance to thermal fatigue crack initiation and propagation. When thermal fatigue cracking occurs, the cracks always initiate at the surface of the specimen. The major path of crack propagation is generally along the eutectic cell-wall region among the ferrite grain boundaries, which is the location of MgO inclusions agglomerating together. On the other hand, dynamic recrystallization of ferrite grains occurs when the thermal cycle exceeds a certain number after testing at 800 °C. Besides, dynamic recrystallization of the ferrite matrix suppresses the initiation and propagation of thermal fatigue cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.J. Park, R.B. Gundlach, R.G. Thomas, and J.F. Janowak: AFS Trans., 1985, vol. 93, pp. 415–22.

    CAS  Google Scholar 

  2. Y.J. Park, R.B. Gundlach, and J.F. Janowak: AFS Trans., 1990, vol. 98, pp. 267–72.

    Google Scholar 

  3. K. Roehrig: AFS Trans., 1978, vol. 86, pp. 75–88.

    CAS  Google Scholar 

  4. S.C. Lee and L.C. Weng: Metall. Trans. A, 1991, vol. 22A, pp. 1821–31.

    CAS  Google Scholar 

  5. M.C. Rukadikar and G.P. Reddy: AFS Trans., 1988, vol. 96, pp. 351–60.

    Google Scholar 

  6. K.R. Ziegler and J.F. Wallace: AFS Trans., 1984, vol. 92, pp. 735–48.

    CAS  Google Scholar 

  7. H. Fredriksson, P.-A. Sunnerkrantz, and P. Ljubinkovic: Mater. Sci. Technol., 1988, vol. 4, pp. 222–26.

    CAS  Google Scholar 

  8. J.F. Janowak, J.D. Crawford, and K. Roehrig: Casting Eng./Foundry World, 1982, vol. 14, pp. 32–41.

    Google Scholar 

  9. J.F. Janowak: AFS Int. Cast. Met. J., 1981, pp. 28–41.

  10. M.C. Rukadikar and G.P. Reddy: J. Mater. Sci., 1986, vol. 21, pp. 4403–10.

    Article  CAS  Google Scholar 

  11. C.P. Cheng, S.M. Chen, T.S. Lui, and L.H. Chen: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 325–34.

    Article  CAS  Google Scholar 

  12. S.F. Chen, T.S. Lui, and L.H. Chen: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 557–61.

    CAS  Google Scholar 

  13. A. Weronski: Thermal Fatigue of Metals, Marcel Dekker, Inc., New York, NY, 1991, p. 175.

    Google Scholar 

  14. S.I. Karsay: Ductile Iron II, Quebec Iron and Titanium Corporation, Illinois, USA, 1971, Ch. 1.

    Google Scholar 

  15. M. Sofue, S. Okada, and T. Sasaki: AFS Trans., 1970, vol. 78, pp. 173–82.

    Google Scholar 

  16. M. Sofue: Imono, 1975, vol. 47, pp. 681–87.

    CAS  Google Scholar 

  17. O. Yanagisawa and T.S. Lui: Trans. JIM, 1983, vol. 24, pp. 858–67.

    Google Scholar 

  18. Y.F. Lin, T.S. Lui, and L.H. Chen: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 821–25.

    CAS  Google Scholar 

  19. M. Takanezawa, Y. Kobayashi, and Y. Tomota: J. JFS, 1997, vol. 69, pp. 41–48.

    CAS  Google Scholar 

  20. R.N. Wright and T.R. Farrell: AFS Trans., 1977, vol. 85, pp. 853–66.

    Google Scholar 

  21. Y. Iwabuchi, I. Kobayashi, H. Narita, and T. Takenouchi: J. JFS, 1996, vol. 68, pp. 209–15.

    CAS  Google Scholar 

  22. S.F. Chen, T.S. Lui, and L.H. Chen: Cast Met., 1994, vol. 6, pp. 199–203.

    Google Scholar 

  23. D.M. Stefanescu: Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 1, p. 64.

    Google Scholar 

  24. W.D. Kingery: J. Am. Ceram. Soc., 1955, vol. 38, pp. 3–15.

    Article  Google Scholar 

  25. C.P. Cheng, T.S. Lui, and L.H. Chen: Cast Met., 1996, vol. 8, pp. 211–16.

    Google Scholar 

  26. G. Gottstein and S. Chen: Int. Conf. on Recrystallization in Metallic Materials, The Minerals, Metals & Materials Society, Pennsylvania, USA, 1990, pp. 69–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, C.P., Lui, T.S. & Chen, L.H. Effect of residual magnesium content on thermal fatigue cracking behavior of high-silicon spheroidal graphite cast iron. Metall Mater Trans A 30, 1549–1558 (1999). https://doi.org/10.1007/s11661-999-0092-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0092-y

Keywords

Navigation