Skip to main content
Log in

Investigation of microstructural coarsening in Sn-Pb alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The central theme of this work is to investigate the kinetics of microstructural evolution at high volume fractions of the dispersed phase in a solid-liquid mixture. Until recently, the kinetics of coarsening in the high volume fraction range was not clearly established. A recent study focused on high volume fractions (V v >0.90) revealed that the temporal scaling laws that describe phase coarsening change from the conventional cube root of time behavior to a fourth-power relationship. This work probes the variation of the temporal exponent with volume fraction of the dispersed phase (V v >-0.60). An overview of the fundamentals of the physics involved in diffusion-limited coarsening is presented. Also explained is the relevance of phase coarsening in various applications. A succinct review of the attempts to understand the various parameters involved in coarsening is provided, with the Sn-Pb system chosen for this study for reasons apart from its importance as a commercial solder alloy system. Details of the experimental procedures are described, and, following this, the results are outlined and the underlying mechanisms discussed. The findings reveal that the temporal exponent changes as the volume fraction of the dispersed phase changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ostwald: Z. Phys., 1900, vol. 34, p. 495.

    Google Scholar 

  2. H. Freundlich: Kapillarchemie, Akademische Verlagsgesellschaft, Leipzig, Germany, 1922.

    Google Scholar 

  3. W.C. Johnson and P.W. Voorhees: Metall. Trans. A, 1985, vol. 16A, pp. 337–47.

    CAS  Google Scholar 

  4. L. Ratke and W.K. Thieringer: Acta Metall., 1985, vol. 33 (10), pp. 1793–1802.

    Article  Google Scholar 

  5. A. Maheswari and A.J. Ardell: Scripta Metall., 1992, vol. 26, pp. 350–52.

    Google Scholar 

  6. O.M. Todes: J. Phys. Chem. (Sov.), 1946, vol. 20 (7), p. 629.

    CAS  Google Scholar 

  7. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem., 1961, vol. 19 (1–2), pp. 35–50.

    Google Scholar 

  8. C. Wagner: Z. Electrochem., 1961, vol. 65, pp. 581–615.

    CAS  Google Scholar 

  9. S. Sarian and W. Weart: J. Appl. Phys., 1966, vol. 37 (4), pp. 1675–81.

    Article  CAS  Google Scholar 

  10. R. Asimov: Acta Metall., 1963, vol. 11, pp. 72–73.

    Article  Google Scholar 

  11. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61–71.

    Article  Google Scholar 

  12. A.D. Brailsford and P. Wynblatt: Acta Metall., 1979, vol. 27, pp. 489–97.

    Article  CAS  Google Scholar 

  13. K. Tsumuraya and Y. Miyata: Acta Metall., 1983, vol. 31, pp. 437–52.

    Article  CAS  Google Scholar 

  14. P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32 (11), pp. 2013–30.

    Article  CAS  Google Scholar 

  15. P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32 (11), pp. 2001–11.

    Article  CAS  Google Scholar 

  16. S.C. Hardy and P.W. Voorhees: Metall. Trans. A, 1988, vol. 19A, pp. 2713–21.

    CAS  Google Scholar 

  17. J.A. Marqusee and J. Ross: J. Chem. Phys., 1984, vol. 80 (1), pp. 536–43.

    Article  CAS  Google Scholar 

  18. M. Tokuyama and M. Kawasaki: Physica, 1984, vol. 123A, pp. 386–411.

    Google Scholar 

  19. C.K.L. Davies, P. Nash, and R.N. Stevens: J. Mater. Sci., 1980, vol. 15, pp. 1521–32.

    Article  CAS  Google Scholar 

  20. A. Maheshwari and A.J. Ardell: Acta Metall. Mater., 1992, vol. 40 (10), pp. 2661–67.

    Article  CAS  Google Scholar 

  21. M. Meshkinpour, A. Maheshwari, and A.J. Ardell: in Statics and Dynamics of Alloy Phase Transformations, P.E.A. Turchi and A. Gonis, eds., Plenum Press, New York, NY, 1994.

    Google Scholar 

  22. S.P. Marsh: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1989.

    Google Scholar 

  23. S.S. Mani: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1995.

    Google Scholar 

  24. T.B. Massalski, ed., Binary alloy phase diagrams, ASM, Metals Park, OH, 1986.

    Google Scholar 

  25. P.W. Voorhees and M.E. Glicksman: Metall. Trans. A, 1984, vol. 15A, pp. 1081–88.

    CAS  Google Scholar 

  26. N. Akaiwa, S.C. Hardy, and P.W. Voorhees: Acta Metall. Mater., 1991, vol. 39 (11), pp. 2931–42.

    Article  CAS  Google Scholar 

  27. E.E. Underwood: Quantitative Stereology, Addison-Wesley Publishing Company, Reading, MA, 1970.

    Google Scholar 

  28. J.W. Cahn: Acta Metall., 1991, vol. 39, pp. 2189–99.

    Article  CAS  Google Scholar 

  29. A.V. Galina, V.E. Fradkov, and L.S. Shvindlerman: Phys. Met. Metall., 1987, vol. 63, p. 165.

    Google Scholar 

  30. I.E. Geguzin and M.A. Krivoglaz: Consultants Bur., 1973, p. 342.

  31. V.Y. Aristov, V.E. Fradkov, and L.S. Shvindlerman: Phys. Met. Metall., 1978, vol. 45, p. 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kailasam, S.K., Glicksman, M., Mani, S.S. et al. Investigation of microstructural coarsening in Sn-Pb alloys. Metall Mater Trans A 30, 1541–1547 (1999). https://doi.org/10.1007/s11661-999-0091-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0091-z

Keywords

Navigation