Skip to main content
Log in

Numerical analysis of the formability of an aluminum 2024 alloy sheet and its laminates with steel sheets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A criterion for ductile fracture is applied to the formability prediction of an aluminum 2024 alloy sheet and its laminated composite sheets. Axisymmetric deep-drawing processes of the 2024 sheet and the laminates clad by mild steel sheets are simulated by the finite-element method. From the calculated distributions and histories of stress and strain, the fracture initiation site and the forming limit are predicted by means of the ductile fracture criterion. The predictions so obtained are compared with experimental observations. The results show that the fracture initiation in the 2024 sheet with no appearance of necking is successfully predicted by the present numerical approach. Furthermore, it is found that the formability of the 2024 sheet is improved by sandwiching it with the mild steel sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kawai, T. Mori, M. Inoue, and Y. Liu: Trans. Jpn. Soc. Mech. Eng., 1986, vol. 52C, pp. 1689–95.

    Google Scholar 

  2. S.D. Antolovich, A. Saxena, and G.R. Chanani: Eng. Fract. Mech., 1975, vol. 7, pp. 649–52.

    Article  CAS  Google Scholar 

  3. W.J. Mills and R.W. Hertzberg: Eng. Fract. Mech., 1975, vol. 7, pp. 705–11.

    Article  CAS  Google Scholar 

  4. T. Takamatsu and M. Ichikawa: JSME Int. J., 1987, vol. 30, pp. 1035–41.

    Google Scholar 

  5. J. Zuidema and M. Mannesse: Eng. Fract. Mech., 1991, vol. 40, pp. 105–17.

    Article  Google Scholar 

  6. O. Partl and J. Schijve: Int. J. Fatigue, 1993, vol. 15, pp. 293–99.

    Article  CAS  Google Scholar 

  7. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–18.

    Article  Google Scholar 

  8. R. Hill: J. Mech. Phys. Solids, 1952, vol. 1, pp. 19–30.

    Article  Google Scholar 

  9. Z. Marciniak and K. Kuczynski: Int. J. Mech. Sci., 1967, vol. 9, pp. 609–20.

    Article  Google Scholar 

  10. S. Stören and J.R. Rice: J. Mech. Phys. Solids, 1975, vol. 23, pp. 421–41.

    Article  Google Scholar 

  11. S.E. Clift, P. Hartley, C.E.N. Sturgess, and G.W. Rowe: Int. J. Mech. Sci., 1990, vol. 32, pp. 1–17.

    Article  Google Scholar 

  12. K. Osakada and K. Mori: Ann. CIRP, 1978, vol. 27, pp. 135–39.

    CAS  Google Scholar 

  13. S.I. Oh, C.C. Chen, and S. Kobayashi: Trans. ASME, J. Eng. Ind., 1979, vol. 101, pp. 36–44.

    Google Scholar 

  14. M. Ayada, T. Higashino, and K. Mori: Advanced Technology of Plasticity, K. Lange, ed., Springer-Verlag, Berlin, 1987, vol. 1, pp. 553–58.

    Google Scholar 

  15. M. Toda, T. Miki, S. Yanagimoto, and K. Osakada: J. Jpn. Soc. Technol. Plasticity, 1988, vol. 29, pp. 971–76.

    Google Scholar 

  16. M. Oyane, T. Sato, K. Okimoto, and S. Shima: J. Mech. Working Technol., 1980, vol. 4, pp. 65–81.

    Article  CAS  Google Scholar 

  17. R. Hill: The Mathematical Theory of Plasticity, Oxford University Press, Oxford, United Kingdom, 1950, pp. 318–21.

    Google Scholar 

  18. K. Osakada, J. Nakano, and K. Kori: Int. J. Mech. Sci., 1982, vol. 24, pp. 459–68.

    Article  Google Scholar 

  19. E. Siebel: Stahl Eisen, 1954, vol. 74, pp. 155–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takuda, H., Hatta, N. Numerical analysis of the formability of an aluminum 2024 alloy sheet and its laminates with steel sheets. Metall Mater Trans A 29, 2829–2834 (1998). https://doi.org/10.1007/s11661-998-0323-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0323-7

Keywords

Navigation