Skip to main content
Log in

Determination of the melting and solidification characteristics of solders using differential scanning calorimetry

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) is used in the present study to determine the onset temperature of phase transformation and the enthalpy of fusion of various solder alloys. The solders studied are Sn-Pb, Sn-Bi, Ag-Sn, In-Ag, and Sn-Pb-Bi alloys. Very notable undercooling, such as 35 °C, is observed in the solidification process; however, a superheating effect is not as significant in the heating process. Besides the direct measurements of reaction temperature and heat of fusion, the fraction solid vs temperature has also been determined using a DSC coupled with a mathematical-model method. The heating and cooling curves of the solders are first determined using DSC. By mathematically modeling the heat transfer of the DSC cells, the heat evolution and absorption can be calculated, and then the melting and solidification curves of the solder alloys are determined. The three ternary alloys, Sn-35 wt pct Pb-10 wt pct Bi, Sn-45 wt pct Pb-10 wt pct Bi, and Sn-55 wt pct Pb-10 wt pct Bi, displayed similar DSC cooling curves, which had three reaction peaks. However, the solid fractions of the three alloys at the same temperature in the semisolid state, which had been determined quantitatively using the DSC coupled with a mathematical method, were different, and their primary solidification phases were also different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Klein Wassink: Soldering in Electronics, 2nd ed., Electrochemical Publications, British Isles, 1989.

    Google Scholar 

  2. R. Strauss: Surface Mount Technology, Butterworth-Heinemann, Oxford, United Kingdom, 1994.

    Google Scholar 

  3. H.D. Brody and M.C. Flemings: Trans. TMS-AIME, 1996, vol. 236, pp. 615–24.

    Google Scholar 

  4. R.J. Claxton: J. Met., 1975, vol. 27 (2), pp. 14–16.

    CAS  Google Scholar 

  5. G. Fortina and A. Anselmi: Aluminio, 1979, vol. 48 (4), pp. 179–87.

    CAS  Google Scholar 

  6. L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 1: Wrought Alloys, Skan Aluminum, Oslo, Norway, 1986.

    Google Scholar 

  7. A. Roosz and H.E. Exner: Acta Metall. Mater., 1990, vol. 38 (2), pp. 375–80.

    Article  CAS  Google Scholar 

  8. S.-W. Chen, Y.-Y. Chuang, Y.A. Chang, and M.G. Chu: Metall. Trans. A, 1991, vol. 22A, pp. 2837–48.

    CAS  Google Scholar 

  9. S.-W. Chen and C.-C. Huang: Acta Mater., 1996, vol. 44 (5), pp. 1955–65.

    Article  CAS  Google Scholar 

  10. S.-W. Chen and S.-C. Jeng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2722–26.

    CAS  Google Scholar 

  11. S.-W. Chen and S.-C. Jeng: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 503–04.

    CAS  Google Scholar 

  12. B. Cantor: J. Thermal Analysis, 1994, vol. 42, pp. 647–65.

    Article  CAS  Google Scholar 

  13. P.T. Vianco and D.R. Frear: JOM, 1993, vol. 45 (7), pp. 14–19.

    CAS  Google Scholar 

  14. C. Melton: JOM, 1993, pp. 33–35.

  15. J. Glazer: Int. Mater. Rev., 1995, vol. 40 (2), pp. 65–93.

    CAS  Google Scholar 

  16. D.R. Frear: JOM, 1996, vol. 48 (5), pp. 49–53.

    CAS  Google Scholar 

  17. M.T. McCormack, Y. Degani, H.S. Chen, and W.R. Gesick: JOM, 1996, pp. 54–56.

  18. H. Berg, G. Ganesan, and G. Lewis: Adv. Packaging, 1996, vol. 5 (3), pp. 18–22.

    Google Scholar 

  19. A.P. Gray: in Analytical Calorimetry, R.S. Porter and J.F. Johnson, eds., Plenum Press, New York, NY, 1968, pp. 209–18.

    Google Scholar 

  20. I. Karakaya and W.T. Thompson: in ASM Handbook, vol. 3, Alloy Phase Digrams, H. Baker, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, p. 2.335.

    Google Scholar 

  21. H. Okamoto: in ASM Handbook, vol. 3, Alloy Phase Diagrams, H. Baker, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, p. 2.106.

    Google Scholar 

  22. I. Karakaya and W.T. Thompson: in ASM Handbook, vol. 3, Alloy Phase Diagrams, H. Baker, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, p. 2.37.

    Google Scholar 

  23. M.R. Baren: in ASM Handbook, vol. 3, Alloy Phase Diagrams, H. Baker, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, p. 2.31.

    Google Scholar 

  24. E. Janecke: Z. Metall. 1937, vol. 29 (11), pp. 367–73.

    CAS  Google Scholar 

  25. T.-H. Ho, W. Hofmann, and H. Hannemann: Z. Metall. 1953, vol. 44, pp. 127–29.

    CAS  Google Scholar 

  26. R.B. Gershman: Zh. Fiz. Kh., Moscow, 1958, vol. 32 (1), pp. 12–18.

    CAS  Google Scholar 

  27. N.A. Gokcen: in ASM Handbook, vol. 3, Alloy Phase Digrams, H. Baker, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, p. 2.103.

    Google Scholar 

  28. A. Bolcavage, S.-W. Chen, C.R. Kao, Y.A. Chang, and A.D. Romig, Jr.: J. Phase Equilibria, 1993, vol. 14 (1), pp. 14–21.

    CAS  Google Scholar 

  29. V.C. Marcotte: IBM East Fishkill, New York, private communication, 1990.

  30. S.-W. Chen and Y.A. Chang: Metall. Trans. A, 1991, vol. 22A, pp. 267–71.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SW., Lin, CC. & Chen, C. Determination of the melting and solidification characteristics of solders using differential scanning calorimetry. Metall Mater Trans A 29, 1965–1972 (1998). https://doi.org/10.1007/s11661-998-0022-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0022-4

Keywords

Navigation