Skip to main content
Log in

Retained austenite characteristics in thermomechanically processed Si-Mn transformation-induced plasticity steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is well known that a significant amount of retained austenite can be obtained in steels containing high additions (>1 pct) of Si, where bainite is the predominant microconstituent. Furthermore, retained austenite with optimum characteristics (volume fraction, composition, morphology, size, and distribution), when present in ferrite plus bainite microstructures, can potentially increase strength and ductility, such that formability and final properties are greatly improved. These beneficial properties can be obtained largely by transformation-induced plasticity (TRIP). In this work, the effect of a microalloy addition (0.035 pct Nb) in a 0.22 pct C-1.55 pct Si-1.55 pct Mn TRIP steel was investigated. Niobium was added to enable the steel to be processed by a variety of thermomechanical processing (TMP) routes, thus allowing the effects of prior austenite grain size, austenite recrystallization temperature, Nb in austenite solid solution, and Nb as a precipitate to be studied. The results, which were compared with those of the same steel without Nb, indicate that the retained austenite volume fraction is strongly influenced by both prior austenite grain size and the state of Nb in austenite. Promoting Nb(CN) precipitation by the change in TMP conditions resulted in a decrease in the V RA . These findings are rationalized by considering the effects of changes in the TMP conditions on the subsequent transformation characteristics of the parent austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 253–59.

    Google Scholar 

  2. B.R. Banerjee, J.M. Capenos, and J.J. Hauser: Application of Fracture Toughness Parameters to Structural Metals, Gordon and Breach Science Publishers, Inc., New York, NY, 1966, pp. 373–406.

    Google Scholar 

  3. R. Entin: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp. 295–311.

    Google Scholar 

  4. A. Zarei-Hanzaki: Ph.D. Thesis, McGill University, Montreal, 1994.

    Google Scholar 

  5. G. Thomas and J.Y. Koo: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 183–201.

    Google Scholar 

  6. K.I. Sugimoto, N. Usui, M. Kobayashi, and S.I. Hashimoto: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1311–18.

    CAS  Google Scholar 

  7. O. Matsumura, Y. Sakuma, and H. Takechi: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1014–20.

    CAS  Google Scholar 

  8. Y. Sakuma, S. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98.

    CAS  Google Scholar 

  9. K.I. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa: Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 775–82.

    CAS  Google Scholar 

  10. A. Zarei-Hanzaki, P.D. Hodgson, and S. Yue: 33rd Mechanical Working and Steel Processing Conf., ISS-AIME, Warrendale, PA, 1992, pp. 459–66.

    Google Scholar 

  11. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing Company, Inc., Reading, MA, 1978.

    Google Scholar 

  12. C.F. Jatczak, J.A. Larson, and S.W. Shin: Retained Austenite and Its Measurements by X-ray Diffraction, Society of Automotive Engineers, Inc., Warrendale, PA, 1980, p. 9.

    Google Scholar 

  13. G.E. Lucas: Metall. Trans. A, 1990, vol. 21A, pp. 1105–19.

    CAS  Google Scholar 

  14. A. Zarei-Hanzaki, R. Pandi, P.D. Hodgson, and S. Yue: Metall. Trans. A, 1993, vol. 24A, pp. 2657–65.

    Google Scholar 

  15. J.R. Bradley, H.I. Aaronson, K.C. Russell, and W.C. Johnson: Metall. Trans. A, 1977, vol. 8A, pp. 1955–61.

    CAS  Google Scholar 

  16. H.K.D.H. Bhadeshia: Bainite in Steels, Transformation, Microstructure and Properties, The Institute of Materials, London, 1992, p. 173.

    Google Scholar 

  17. C.M. Sellars: Hot Working and Forming Processes, The Metals Society, London, 1980, pp. 3–15.

    Google Scholar 

  18. S. Bandoh, O. Matsumura, and Y. Sakuma: Trans. Iron Steel Inst. Jpn. 1988, vol. 28, pp. 569–74.

    CAS  Google Scholar 

  19. A. Zarei-Hanzaki, P.D. Hodgson, and S. Yue: Iron Steel Inst. Jpn. Int., 1995, vol. 35 (1), pp. 79–85.

    Google Scholar 

  20. Y. Sakuma, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1992, vol. 23A, pp. 1221–32.

    CAS  Google Scholar 

  21. P. Brozzo, G. Buzzichelli, A. Mascanzoni, and M. Mirabile: Met. Sci., 1977, vol. 11, pp. 123–29.

    Article  CAS  Google Scholar 

  22. A.K. Sinha: Ferrous Physical Metallurgy, Butterworth and Co., Stoneham, MA, 1989, p. 315.

    Google Scholar 

  23. M.H. Richman, D.A. Thomas, and M. Cohen: Acta Metall., 1959, vol. 7, pp. 814–16.

    Article  Google Scholar 

  24. K.C. Russell: Metall. Trans., 1971, vol. 2, pp. 5–17.

    CAS  Google Scholar 

  25. H. Baumgart, H.F. de Boer, and F. Heisterkamp: Niobium, Conf. Proc., H. Stuart, ed., TMS, Warrendale, PA, 1981, pp. 883–915.

    Google Scholar 

  26. W.J. Liu: Ph.D. Thesis, McGill University, Montreal, 1987.

    Google Scholar 

  27. I. Weiss and J.J. Jonas: Metall. Trans. A, 1979, vol. 10A, pp. 831–40.

    CAS  Google Scholar 

  28. A.J. DeArdo, J.M. Gray, and L. Meyer: Proc. Int. Symp. on Niobium, H. Stuart, ed., AIME, Warrendale, PA, 1981, pp. 685–759.

    Google Scholar 

  29. S. Okaguchi, K. Fujiwara, and T. Hashimoto: Physical Metallurgy of Direct-Quenched Steels, TMS, Warrendale, PA, 1992, pp. 169–77.

    Google Scholar 

  30. M.H. Thomas and G.M. Michal: in Solid-Solid Phase Transformation, H.L. Aaronson, D.E. Loughlin, R.F. Sekerka, and C.M. Wayman, eds., AIME, Warrendale, PA, 1982, pp. 469–78.

    Google Scholar 

  31. J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1981, vol. 12A, pp. 1729–41.

    Google Scholar 

  32. W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1433–63.

    CAS  Google Scholar 

  33. R.B.G. Yeo: Trans. TMS-AIME, 1963, vol. 227, pp. 884–90.

    CAS  Google Scholar 

  34. R.K. Amin and F.B. Pickering: Thermomechanical Processing of Microalloyed Austenite, AIME, Warrendale, PA, 1981, pp. 377–403.

    Google Scholar 

  35. S. Okaguchi, T. Hashimoto, and H. Ohtani: Proc. Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steel and Other Metals (THERMEC-88), I. Tamura, ed., ISIJ, Tokyo, 1988, pp. 330–36.

    Google Scholar 

  36. A.J. Goldman and W.D. Robertson: Acta Metall., 1964, vol. 12, pp. 1265–75.

    Article  CAS  Google Scholar 

  37. G.R. Speich, A.J. Schwoeble, and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 2031–37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanzaki, A.Z., Hodgson, P.D. & Yue, S. Retained austenite characteristics in thermomechanically processed Si-Mn transformation-induced plasticity steels. Metall Mater Trans A 28, 2405–2414 (1997). https://doi.org/10.1007/s11661-997-0197-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0197-0

Keywords

Navigation