Skip to main content
Log in

Contact of crack surfaces during fatigue: Part 1. formulation of the model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model has been developed to predict crack opening and closing behavior for propagating fatigue cracks which undergo significant sliding displacements at crack flanks. Crack surfaces were described statistically by assuming a random distribution of asperity heights and a mean density of asperities and asperity radii. The propagating crack was subdivided into strips, and each strip was treated as a contact problem between two randomly rough surfaces. The remote tensile stresses were varied in a cyclical manner. The contact stresses at minimal load were determined by analyzing the local crushing of asperities via a sliding mechanism. Then, upon loading, the crack opening stress levels were computed when the contact stresses were overcome. Part 1 of this article includes a discussion of the previous models, then introduces statistical contact mechanics concepts which are utilized in the fatigue crack growth simulations. In addition, the numerical algorithms for the modeling work and the sensitivity of results to model parameters are described. The role of stress ratio, maximum stress level, crack length, and the geometry of crack surfaces on the crack growth behavior will be discussed in Part 2 of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sehitoglu and A. Garcia: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2277–89.

    CAS  Google Scholar 

  2. S. Suresh: Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  3. H. Sehitoglu, K. Gall, and A.M. Garcia: Int. J. Fract., 1996, vol. 80 (2–3), pp. 165–92.

    CAS  Google Scholar 

  4. K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom, 1985.

    Google Scholar 

  5. N.J. Adams: Eng. Fract. Mech., 1972, vol. 4, pp. 543–54.

    Article  Google Scholar 

  6. S. Purushothan and J.K. Tien: Scripta Metall., 1975, vol. 9, pp. 923–26.

    Article  Google Scholar 

  7. N. Walker and C.J. Beevers: Fatigue of Engineering Materials and Structures, 1979, vol. 1, pp. 135–48.

    Article  CAS  Google Scholar 

  8. D.L. Davidson and J. Lankford: Mater. Sci. Eng., 1983, vol. 60, pp. 225–29.

    Article  Google Scholar 

  9. K. Minakawa and A.J. McEvily: Scripta Metall., 1981, vol. 15, pp. 633–36.

    Article  Google Scholar 

  10. J.E. Allison and J.C. Williams: Titanium Science and Technology, G. Lujtering, U. Zwicker, and W. Burk, eds., DGM Publishers, Oberusel, 1985, vol. 1, pp. 2243–50.

    Google Scholar 

  11. J.M. Larsen: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1987; also J.M. Larsen, J.C. Williams, and A.W. Thompson: ASTM STP 982, ASTM, Philadelphia, PA, 1988, pp. 149–67.

    Google Scholar 

  12. G.T. Gray III, J.C. Williams, and A.W. Thompson: Metall. Trans. A, 1983, vol. 14A, pp. 421–33.

    Google Scholar 

  13. D. Krueger, S.D. Antolovich, and R.H. Van Stone: Metall. Trans. A, 1987, vol. 18A, pp. 1431–49.

    CAS  Google Scholar 

  14. C.P. Blankenship and E.A. Starke: Fatigue Fract. Eng. Mater. Struct., 1991, vol. 14, pp. 103–14.

    Article  Google Scholar 

  15. R.D. Carter, E.W. Lee, E.A. Starke, and C.J. Beevers: Metall. Trans. A, 1984, vol. 15A, pp. 555–63.

    CAS  Google Scholar 

  16. S. Suresh: Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  17. B. Cotterell and J. Rice: Int. J. Fract., 1980, vol. 16, pp. 155–69.

    Article  Google Scholar 

  18. S. Suresh and R.O. Ritchie: Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  19. M.C. Smith and R.A. Smith: ASTM STP 924, ASTM, Philadelphia, PA, 1988, pp. 260–80.

    Google Scholar 

  20. H. Nakamura and H. Kobayashi: ASTM STP 982, Philadelphia, PA, 1988, pp. 459–74.

  21. C.J. Beevers, K. Bell, R.L. Carlson, and E.A. Starke: Eng. Fract. Mech., 1984, vol. 19 (1), pp. 93–100.

    Article  Google Scholar 

  22. J. Llorca: Fatigue Fract. Eng. Mater. Struct., 1992, vol. 15 (7), pp. 655–69.

    Article  CAS  Google Scholar 

  23. R.L. Carlson and C.J. Beevers: Eng. Fract. Mech., 1984, vol. 20, pp. 687–90.

    Article  Google Scholar 

  24. J. Tong, J.R. Yates, and M.W. Brown: Eng. Fract. Mech., 1995, vol. 52 (4), pp. 613–23.

    Article  Google Scholar 

  25. J.A. Greenwood and J.P.B. Williamson: Proc. R. Soc. London, vol. A295, pp. 300–19.

  26. S.P. Timoshenko and J.N. Goodier: Theory of Elasticity, McGraw-Hill, New York, NY, 1987.

    Google Scholar 

  27. J.A. Greenwood and J.H. Tripp: Proc. Inst. Mech. Eng., 1971, vol. 185, pp. 625–33.

    Google Scholar 

  28. K.L. Johnson and H.R. Shercliff: Int. J. Mech. Sci., 1992, vol. 34 (5), pp. 375–94.

    Article  Google Scholar 

  29. A. Kapoor and K.L. Johnson: Leeds-Lyon Symp. on Tribology, 1993, pp. 81–90.

  30. J.C. Newman, Jr.: ASTM STP 748, ASTM, Philadelphia, PA, 1981, pp. 53–84.

    Google Scholar 

  31. H.A. Francis: Wear, 1982, vol. 76, pp. 221–45.

    Article  Google Scholar 

  32. W.R. Chang, I. Etsion, and D.B. Bogy: J. Tribol., 1987, vol. 109, pp. 257–63.

    Article  Google Scholar 

  33. Y. Jiang and H. Sehitoglu: Wear, 1996, vol. 191, pp. 35–44.

    Article  CAS  Google Scholar 

  34. R.O. Ritchie, W. Yu, A. Blom, and D. Holm: Fatigue Fract. Eng. Mater. Struct., 1987, vol. 10 (5), pp. 343–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, A.M., Sehitoglu, H. Contact of crack surfaces during fatigue: Part 1. formulation of the model. Metall Mater Trans A 28, 2263–2275 (1997). https://doi.org/10.1007/s11661-997-0184-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0184-5

Keywords

Navigation