Skip to main content
Log in

Evolution of recrystallization texture from aluminum sheet cold rolled under unlubricated condition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The texture of cold-rolled aluminum sheet has been known to vary through thickness due to inhomogeneous deformation, which can be caused by a characteristic deformation zone geometry and friction between materials and rolls during rolling. The copper texture is obtained in the center layer, which is plane strain compressed, while the shear texture is in the surface layer, which is approximated by major {001}t〈110t〉 and minor {111}t〈112t〉 and {111}t〈110t〉 components. The recrystallization texture of the surface layer is approximated by {225}t〈10 5 2t〉. The evolution of the recrystallization texture has been explained by the maximum energy release theory, in which the absolute maximum normal stress direction in the deformed state becomes parallel to the minimum elastic modulus direction of the recrystallized grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M.B. Rodrigues, H. Bochsel, and P. Furrer: Textures in Non-Ferrous Metals and Alloys, TMS, Warrendale, PA, 1984, pp. 45–59.

    Google Scholar 

  2. W.B. Hutchinson and H.-E. Ekström: Mater. Sci. Technol., 1990, vol. 6, pp. 1103–111.

    CAS  Google Scholar 

  3. A.D. Rollett, G.R. Canova, and U.F. Kocks: Formability and Metallurgical Structure, TMS, Warrendale, PA, 1987, pp. 147–57.

    Google Scholar 

  4. C.S. Barrett and T.B. Massalski: Structures of Metals, McGraw-Hill, New York, NY, 1966.

    Google Scholar 

  5. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Elmsford, NY, 1996.

    Google Scholar 

  6. G. von Vargha and G. Wassermann: Metallwirtschaft, 1933, vol. 12, pp. 511–13.

    CAS  Google Scholar 

  7. I.L. Dillamore and W.T. Roberts: J. Inst. Met., 1963–64, vol. 92, pp. 193–99.

    Google Scholar 

  8. W. Truszkowski, J. Krol, and B. Major: Metall. Trans. A, 1980, vol. 11A, pp. 749–58.

    CAS  Google Scholar 

  9. W. Truszkowski, J. Krol, and B. Major: Metall. Trans. A, 1982, vol. 13A, pp. 665–69.

    Google Scholar 

  10. H.O. Asbeck and H. Mecking: Mater. Sci. Eng., 1978, vol. 34, pp. 111–19.

    Article  CAS  Google Scholar 

  11. H. Hu and R.S. Cline: Trans. TMS-AIME, 1962, vol. 224, pp. 784–97.

    CAS  Google Scholar 

  12. H.W.F. Heller, J.H. van Dorp, G. Wolff, and C.A. Verbraak: Met. Sci., 1981, vol. 15, pp. 333–41.

    Article  CAS  Google Scholar 

  13. H.P. Kneijnserg, C.A. Verbraak, and M.J. Ten Bouwhuijs: Acta Metall., 1985, vol. 33, pp. 1759–67.

    Article  Google Scholar 

  14. G.L. Taylor: J. Inst. Met., 1938, vol. 63, pp. 307–24.

    Google Scholar 

  15. J.F. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  16. J. Hansen and H. Mecking: Texture and the Properties of Materials, Metals Society, London, 1976, pp. 34–46.

    Google Scholar 

  17. C.S. Lee and B.J. Duggan: Metall. Trans. A, 1991, vol. 22A, pp. 2637–43.

    CAS  Google Scholar 

  18. C.S. Lee, R.E. Smallman, and B.J. Duggan: Mater. Sci. Technol., 1994, vol. 10, pp. 149–54.

    Google Scholar 

  19. C.-H. Choi, J.-W. Kwon, K.H. Oh, and D.N. Lee: Acta Metall., in press.

  20. T. Kamijo and H. Fukutomi: Microstructural and Crystallographic Aspects of Recrystallization, Risø International Laboratory, Roskilde, Denmark, 1996, pp. 377–82.

    Google Scholar 

  21. C.-H. Choi, K.-H. Kim, S.-Y. Jeong, and D.N. Lee: J. Kor. Inst. Met. Mater., 1997, vol. 35, pp. 429–39.

    CAS  Google Scholar 

  22. A.L. Dons and E. Nes: Mater. Sci. Technol., 1986, vol. 2, pp. 8–18.

    CAS  Google Scholar 

  23. B. Major: Mater. Sci. Technol., 1992, vol. 8, pp. 510–15.

    CAS  Google Scholar 

  24. T. Kamijo, S. Kakota, and H. Inagaki: Acta Metall., 1993, vol. 41, pp. 1713–20.

    Article  CAS  Google Scholar 

  25. C.S. Barrett: Trans. TMS-AIME, 1940, vol. 137, pp. 128–49.

    Google Scholar 

  26. P.A. Beck: Adv. Phys., 1954, vol. 3, pp. 245–324.

    Article  Google Scholar 

  27. B. Liebmann and K. Lücke: J. Met., 1956, vol. 8, pp. 1413–16.

    Google Scholar 

  28. D.N. Lee: Scripta Metall. Mater., 1995, vol. 32, pp. 1689–94.

    Article  CAS  Google Scholar 

  29. Y.B. Park, D.N. Lee, and G. Gottstein: Mater. Sci. Technol., 1997, vol. 13, pp. 289–98.

    CAS  Google Scholar 

  30. D.N. Lee: Text. Microstr., 1996, vols. 26–27, pp. 361–67.

    Article  Google Scholar 

  31. S.-H. Hong, H.-T. Jeong, C.-H. Choi, and D.N. Lee: Mater. Sci. Eng. A, 1997, vol. A229, pp. 174–81.

    CAS  Google Scholar 

  32. D.N. Lee, S. Kang, and J. Yang: Plat. Surf. Finishing, 1995, vol. 82 (3), pp. 76–79.

    CAS  Google Scholar 

  33. D.N. Lee: Met. Mater., 1996, vol. 2, pp. 121–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, CH., Lee, D.N. Evolution of recrystallization texture from aluminum sheet cold rolled under unlubricated condition. Metall Mater Trans A 28, 2217–2222 (1997). https://doi.org/10.1007/s11661-997-0179-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0179-2

Keywords

Navigation