Skip to main content

Advertisement

Log in

Ab Initio Investigation of Planar Defects in Immm-Ni2(Cr,Mo,W) Strengthened HAYNES 244 Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Immm-Ni2(Cr,Mo,W) body centered orthorhombic (BCO) intermetallic phase, denoted as γ′″, is the primary strengthening phase in commercial Ni-base HAYNES® 242® and 244® alloys. Due to the relatively low symmetry and six crystallographic variants precipitating in the face-centered cubic solid solution γ matrix, the deformation mechanisms are expected to be complex, and a myriad of planar defects are predicted to be observed on the close-packed {013} and {110} planes, which are nearly co-planar to the matrix {111} plane. We find that these defects include those analogous to the γ′-Ni3Al phase: superlattice intrinsic stacking faults, antiphase boundaries, and complex stacking faults. We determined these planar defect energies and generalized stacking fault energy surfaces utilizing ab initio density functional theory calculations. The γ′″ {013} and {110} planes exhibited comparable planar defect energies but showed drastically different dislocation shear pathways due to the lower symmetry of the orthorhombic phase. We observed that the addition of W increased the fault energies significantly, which could correspond to the observed increase in yield strength of 244 alloy over that of 242 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys Fundamentals and Applications, 2006.

  2. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  3. R.E. Schafrik and R. Sprague: Advanced Materials and Processes.

  4. R.C. Reed and R.C. Reed: The Physical Metallurgy of Nickel and Its Alloys, 2009.

  5. M.G. Fahrmann, S.K. Srivastava, and L.M. Pike: MATEC Web of Conferences, https://doi.org/10.1051/matecconf/20141417004.

  6. P.E.A. Turchi, L. Kaufman, and Z.K. Liu: Calphad, 2006, vol. 30, pp. 70–87.

    Article  CAS  Google Scholar 

  7. Y. Mishin: Acta Mater., 2004, vol. 52, pp. 1451–67.

    Article  CAS  Google Scholar 

  8. D.C. Lv, D. McAllister, M.J. Mills, and Y. Wang: Acta Mater., 2016, vol. 118, pp. 350–61.

    Article  CAS  Google Scholar 

  9. L. Feng, D. Mcallister, C.H. Zenk, M.J. Mills, and Y. Wang: Deformation Mechanisms of γ ′ and γ ” Co -Precipitates in IN718, Springer International Publishing, 2020.

  10. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills: Prog. Mater. Sci., 2009, vol. 54, p. 54.

    Article  Google Scholar 

  11. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1588–1603.

    Article  CAS  Google Scholar 

  12. Q.Z. Chen and D.M. Knowles: Mater. Sci. Eng. A, 2003, vol. 356, pp. 352–67.

    Article  Google Scholar 

  13. D. Caillard, G. Molénat, and V. Paidar: Mater. Sci. Eng. A, 1997, vol. 234, pp. 695–98.

    Article  Google Scholar 

  14. M.S. Titus, Y.M. Eggeler, A. Suzuki, and T.M. Pollock: Acta Mater., 2015, vol. 82, pp. 530–39.

    Article  CAS  Google Scholar 

  15. T.M. Smith, R.R. Unocic, H. Deutchman, and M.J. Mills: Mater. High Temp., 2016, vol. 33, pp. 372–83.

    Article  CAS  Google Scholar 

  16. B.H. Kear and H.G.F. Wilsdorf: Transactions of The American Institute of Mining, Metallurgical and Petroleum Engineers.

  17. R. (Nasa L.R.C. Bowman: 9th International Symposium on Superalloys.

  18. J.S. van Sluytman, C.J. Moceri, and T.M. Pollock: Mater. Sci. Eng. A, 2015, vol. 639, pp. 747–54.

    Article  Google Scholar 

  19. M. Khantha, V. Vitek, and D.P. Pope: Modell. Simul. Mater. Sci. Eng., 1994, vol. 2, pp. 587–96.

    Article  Google Scholar 

  20. G. Sauthoff: Intermetallics, 2007.

  21. N. Yang, Y. Wei, C. Song, and L. Jiao: Acta Metall. Sin., 1986, vol. 22, pp. 477–83.

    Google Scholar 

  22. M. Dodaran, A.H. Ettefagh, S.M. Guo, M.M. Khonsari, W.J. Meng, N. Shamsaei, and S. Shao: Intermetallics (Barking), 2020, vol. 117, 106670.

    Article  CAS  Google Scholar 

  23. D. Baither, C. Rentenberger, H.P. Karnthaler, and E. Nembach: Philos. Mag. A, 2002, vol. 82, pp. 1795–1805.

    Article  CAS  Google Scholar 

  24. G. Molenat and D. Caillard: Philos. Mag. A, 1991, vol. 64, pp. 1291–1317.

    Article  CAS  Google Scholar 

  25. W. Cai and W.D. Nix: Imperfections in Crystalline Solids, 2016.

  26. Y. Rao, T.M. Smith, M.J. Mills, and M. Ghazisaeidi: Acta Mater., 2018, vol. 148, pp. 173–84.

    Article  CAS  Google Scholar 

  27. T.M. Smith, B.D. Esser, N. Antolin, G.B. Viswanathan, T. Hanlon, A. Wessman, D. Mourer, W. Windl, D.W. McComb, and M.J. Mills: Acta Mater., 2015, vol. 100, pp. 19–31.

    Article  CAS  Google Scholar 

  28. A. Mottura, A. Janotti, and T.M. Pollock: Intermetallics (Barking), 2012, vol. 28, pp. 138–43.

    Article  CAS  Google Scholar 

  29. M. Kumar and V.K. Vasudevan: Acta Mater., 1996, vol. 44, pp. 4865–80.

    Article  CAS  Google Scholar 

  30. M. Kumar and V.K. Vasudevan: Acta Mater., 1997, vol. 45, pp. 3203–22.

    Article  CAS  Google Scholar 

  31. D.G. Pettifor Cottrell Alan Institute of Materials (London England): Electron Theory in Alloy Design, Institute of Materials, London, 1992.

  32. H. Hasan, P. Mlkvik, P.D. Haynes, and V.A. Vorontsov: Materialia (Oxford), 2020, vol. 9, 100555.

    Article  CAS  Google Scholar 

  33. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 48, pp. 13115–18.

    Article  CAS  Google Scholar 

  34. G. McCartney, T. Hacker, and B. Yang: Educause Review.

  35. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–79.

    Article  Google Scholar 

  36. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Article  CAS  Google Scholar 

  37. G. Kresse and J. Furthmüller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  38. G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.

    Article  CAS  Google Scholar 

  39. R. Hu, G.M. Cheng, J.Q. Zhang, J.S. Li, T.B. Zhang, and H.Z. Fu: Intermetallics (Barking), 2013, vol. 33, pp. 60–66.

    Article  CAS  Google Scholar 

  40. V. Vitek: Prog. Mater Sci., 1992, vol. 36, pp. 1–27.

    Article  CAS  Google Scholar 

  41. S. Zhao, G.M. Stocks, and Y. Zhang: Acta Mater., 2017, vol. 134, pp. 334–45.

    Article  CAS  Google Scholar 

  42. T.L. Achmad, W. Fu, H. Chen, C. Zhang, and Z.G. Yang: Comput. Mater. Sci., 2016, vol. 121, pp. 86–96.

    Article  CAS  Google Scholar 

  43. M. Kanani, A. Hartmaier, and R. Janisch: Acta Mater., 2016, vol. 106, pp. 208–18.

    Article  CAS  Google Scholar 

  44. A.R. Natarajan and A. van der Ven: Npj Comput. Mater., 2020, vol. 6, pp. 80–89.

    Article  CAS  Google Scholar 

  45. P. Vinet, J. Ferrantef, J.R. Smith, and J.H. Rose: J. Phys. C, 2022, https://doi.org/10.1088/0022-3719/19/20/001.

    Article  Google Scholar 

  46. J.H. Rose, J. Ferrante, and J.R. Smith: Phys. Rev. Lett., 1981, vol. 47, pp. 675–78.

    Article  CAS  Google Scholar 

  47. A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, and G. Ceder: Comput. Mater. Sci., 2011, vol. 50, pp. 2295–2310.

  48. K.S. Chan, Y.D. Lee, and Y.M. Pan: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 523–37.

    Article  Google Scholar 

  49. K.V. Vamsi and S. Karthikeyan: Superalloys, 2012, vol. 3, pp. 521–30.

    Article  Google Scholar 

  50. K. v. Vamsi and S. Karthikeyan: MATEC Web of Conferences, 2014, vol. 14, pp. 1–6.

  51. J. Kim: J. Alloy. Compd., 2015, vol. 650, pp. 564–71.

    Article  CAS  Google Scholar 

  52. A. Zunger, S.H. Wei, L.G. Ferreira, and J.E. Bernard: Phys. Rev. Lett., 1990, vol. 65, pp. 353–56.

    Article  CAS  Google Scholar 

  53. J.M. Sanchez: Phys. Rev. B, 1993, vol. 48, pp. 14013–15.

    Article  CAS  Google Scholar 

  54. P. Srimannarayana, K. V. Vamsi, and S. Karthikeyan: MATEC Web of Conferences, https://doi.org/10.1051/matecconf/20141415003.

  55. J.B. Singh, M. Sundararaman, and P. Mukhopadhyay: Philos. Mag. A, 2000, vol. 80, pp. 1983–2010.

    Article  CAS  Google Scholar 

  56. W. Cai, V. v. Bulatov, J. Chang, J. Li, and S. Yip: in Dislocations in Solids, 2004.

  57. J. Wang, H. Sehitoglu, and H.J. Maier: Int. J. Plast, 2014, vol. 54, pp. 247–66.

    Article  CAS  Google Scholar 

  58. B. Joos and Q. Ren: Phys. Rev. B, 1994, vol. 50, pp. 5890–98.

    Article  CAS  Google Scholar 

  59. B. Joós and M.S. Duesbery: Phys. Rev. Lett., 1997, vol. 78, pp. 266–69.

    Article  Google Scholar 

  60. G. Schoeck: Mater. Sci. Eng. A, 2005, vol. 400–401, pp. 7–17.

    Article  Google Scholar 

  61. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  CAS  Google Scholar 

  62. D. Hull and D.J. Bacon: Introduction to Dislocations, vol. 5, 2011.

  63. J.P. Hirth, J. Lothe, and T. Mura: Theory of Dislocations (2nd Ed.), 1983.

  64. P. Chowdhury, H. Sehitoglu, W. Abuzaid, and H.J. Maier: Int. J. Plast, 2015, vol. 71, pp. 32–61.

    Article  CAS  Google Scholar 

  65. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.

    Article  CAS  Google Scholar 

  66. Y.M. Juan and E. Kaxiras: Philos. Mag. A, 1996, vol. 74, pp. 1367–84.

    Article  CAS  Google Scholar 

  67. J. Wang and H. Sehitoglu: Intermetallics (Barking), 2014, vol. 52, pp. 20–31.

    Article  CAS  Google Scholar 

  68. V. Paidar, D.P. Pope, and V. Vitek: Acta Metall., 1984, vol. 32, pp. 435–48.

    Article  CAS  Google Scholar 

  69. V. Vitek: Intermetallics (Barking), 1998, vol. 6, pp. 579–85.

    Article  CAS  Google Scholar 

  70. M. Yamaguchi, V. Paidar, D.P. Pope, and V. Vitek: Philos. Mag. A, 1982, vol. 45, pp. 867–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a generous gift from Haynes International, Inc., and through computational resources provided by Information Technology at Purdue University, West Lafayette, Indiana. TM would like to thank Dr. Dongsheng Wen and Dr. Shivam Tripathi for their vital help and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mann.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Table AI.

Table AI Nearest Neighbor Bonds of the {013}γ′″ and {110}γ′″ Planes Compared to the {111}γ´ and {112}γ″ Planes

Appendix B

The equilibrium separation distance of partial dislocations can be calculated by a force balance between the Peach-Koehler forces of the dislocations, and the force from the energy of the planar defect bound by the partials. The following equation was used to determine these distances.

$$\sum F=0=F\left({\gamma }_{defect}\right)-F\left(K, {d}_{i}\right)$$

\(F\left({\gamma }_{defect}\right)\) is the attractive force that minimizes the faulted region, and \(F\left(K, {d}_{i}\right)\) is the repulsive force between the partial dislocations. K is \(\frac{\mu {b}^{2}}{2\pi }\) where μ is the shear modulus of the system and b is the burgers vector of the partial dislocations. The magnitude of the partial dislocation burgers vector depends on the b lattice parameter shown in Table II. The shear modulus for each system and each plane is extracted from the elastic tensor determined using the VASP software for the super cell. The separations distances are shown in Table BI. The coefficients used to analytically represent the slip pathway we calculated and are shown in Table BII. The disregistry function and misfit energy curves for the Ni2Mo and Ni2W system are shown in Figures B1 and B2. These systems are like the Ni2Cr, but the different energies of the various planar defects and different shear moduli affect the equilibrium separation in the disregistry function and the curvature of the misfit energy. The equilibrium separation distance is determined by solving the following systems of equations for each plane and direction (see Table BIII).

{013} Short: \({\gamma }_{isf}=K\left(\frac{1}{{d}_{1}}\right)\)

{013} Full:

$${\gamma }_{isf}=K\left(\frac{1}{{d}_{1}}+\frac{1}{{d}_{1}+{d}_{2}}+\frac{1}{{d}_{1}+{d}_{2}+{d}_{3}}+\frac{1}{{d}_{1}+{d}_{2}+{d}_{3}+{d}_{4}}+\frac{1}{{d}_{1}+{d}_{2}+{d}_{3}+{d}_{4}+{d}_{5}}\right)$$
$${\gamma }_{apb}-{\gamma }_{isf}=K\left(\frac{-1}{{d}_{1}}+\frac{1}{{d}_{2}}+\frac{1}{{d}_{2}+{d}_{3}}+\frac{1}{{d}_{2}+{d}_{3}+{d}_{4}}+\frac{1}{{d}_{2}+{d}_{3}+{d}_{4}+{d}_{5}}\right)$$
$${\gamma }_{scsf}-{\gamma }_{apb}=K\left(\frac{-1}{{d}_{1}+{d}_{2}}-\frac{1}{{d}_{2}}+\frac{1}{{d}_{3}}+\frac{1}{{d}_{3}+{d}_{4}}+\frac{1}{{d}_{3}+{d}_{4}+{d}_{5}}\right)$$
$${\gamma }_{apb{^{\prime}}}-{\gamma }_{scsf}=K\left(\frac{-1}{{d}_{1}+{d}_{2}+{d}_{3}}-\frac{1}{{d}_{1}+{d}_{2}}-\frac{1}{{d}_{3}}+\frac{1}{{d}_{4}}+\frac{1}{{d}_{4}+{d}_{5}}\right)$$
$${\gamma }_{csf}-{\gamma }_{apb{^{\prime}}}=K\left(\frac{-1}{{d}_{1}+{d}_{2}+{d}_{3}+{d}_{4}}-\frac{1}{{d}_{2}+{d}_{3}+{d}_{4}}-\frac{1}{{d}_{3}+{d}_{4}}-\frac{1}{{d}_{4}}+\frac{1}{{d}_{5}}\right)$$

{110} Full:

$${\gamma }_{isf}=K\left(\frac{1}{{d}_{1}}+\frac{1}{{d}_{1}+{d}_{2}}+\frac{1}{{d}_{1}+{d}_{2}+{d}_{3}}+\frac{1}{{d}_{1}+{2d}_{2}+{d}_{3}}+\frac{1}{{d}_{1}+2{d}_{2}+2{d}_{3}}\right)$$
$${\gamma }_{apb}-{\gamma }_{isf}=K\left(\frac{-1}{{d}_{1}}+\frac{1}{{d}_{2}}+\frac{1}{{d}_{2}+{d}_{3}}+\frac{1}{{2d}_{2}+{d}_{3}}+\frac{1}{2{d}_{2}+2{d}_{3}}\right)$$
$${\gamma }_{scsf}-{\gamma }_{apb}=K\left(\frac{-1}{{d}_{1}+{d}_{2}}-\frac{1}{{d}_{2}}+\frac{1}{{d}_{3}}+\frac{1}{{d}_{2}+{d}_{3}}+\frac{1}{{d}_{2}+2{d}_{3}}\right)$$
Table BI Equilibrium Separation Distance Between Partial Dislocations for Each System and Slip Pathway
Table BII Fourier Coefficients for the Various Slip Pathways and Planes for Use in Eq. 6
Table BIII Burgers Vector Magnitudes and Shear Moduli for Use in the Coefficient K
Fig. B1
figure 11

The disregistry functions and misfit energy curves for the Ni2Cr system. (a) Shows the disregistry function for the easy slip pathway of the {013}γ′″ plane and the misfit energy is shown in (b). The equilibrium separation distance of the partial dislocations is also shown. (c) And (e) show the disregistry function for the whole pathway along the {013} γ′″ and {110} γ′″ planes respectively, and (d) and (f) show the misfit energy curves used to determine the Peierls Stress

Fig. B2
figure 12

The disregistry functions and misfit energy curves for the Ni2Cr system. (a) Shows the disregistry function for the easy slip pathway of the {013}γ′″ plane and the misfit energy is shown in (b). The equilibrium separation distance of the partial dislocations is also shown. (c) And (e) show the disregistry function for the whole pathway along the {013} γ′″ and {110} γ′″ planes respectively, and (d) and (f) show the misfit energy curves used to determine the Peierls Stress

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, T., Fahrmann, M.G. & Titus, M.S. Ab Initio Investigation of Planar Defects in Immm-Ni2(Cr,Mo,W) Strengthened HAYNES 244 Alloy. Metall Mater Trans A 53, 4188–4206 (2022). https://doi.org/10.1007/s11661-022-06797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06797-w

Navigation