Skip to main content
Log in

Controlled Valence Electron Concentration Approach to Tailor the Microstructure and Phase Stability of an Entropy-Enhanced AlCoCrFeNi Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the alloying and phase separation behaviors of AlCoCrFeNi-based high-entropy alloys (HEAs) were investigated. The valence electron concentration (VEC) of the AlCoCrFeNi HEA was modified by adding specific elements (Mg, Ti, Mn, Cu, and Zn) to produce biphasic HEAs. These HEAs were prepared by mechanical alloying for 30 hours, followed by the consolidation of the powders at 1000 °C. The results demonstrated the formation of a body-centered cubic (ordered BCC/B2) phase in AlCoCrFeNi–Mg and AlCoCrFeNi–Ti, while a dual-phase face-centered cubic (FCC) phase and minor BCC phases were observed in AlCoCrFeNi–Cu and AlCoCrFeNi–Zn. AlCoCrFeNi and AlCoCrFeNi–Mn exhibited the precipitation of a σ phase in the BCC matrix and a minor FCC phase. The AlCoCrFeNi–Mn HEA exhibited the highest compressive strength among itself, AlCoCrFeNi–Cu, and AlCoCrFeNi–Zn HEAs, owing to the precipitation of a harder σ phase and a higher ordered BCC/B2 fraction. In addition, the AlCoCrFeNi–Cu and AlCoCrFeNi–Zn HEAs exhibited the maximum fracture strain and absorption energies. We propose that a controlled VEC approach by the addition of suitable elements can be used to tailor the microstructure and phase stability of AlCoCrFeNi HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Ranganathan: Curr. Sci., 2003, vol. 85, pp. 1404–06.

    Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A., 2004, vol. 375–377, pp. 213–18.

    Article  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, and P.K. Liaw: Prog. Mater. Sci., 2014, vol. 61, pp. 1–93.

    Article  Google Scholar 

  4. Y. Zhang, X. Yang, and P.K. Liaw: JOM., 2012, vol. 64, pp. 830–38.

    Article  CAS  Google Scholar 

  5. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, and M.D. Uchic: Entropy., 2014, vol. 16, pp. 494–525.

    Article  CAS  Google Scholar 

  6. X. Liu, Z. Pei, and M. Eisenbach: Mater. Des., 2019, vol. 180, p. 107955.

    Article  CAS  Google Scholar 

  7. T. Yang, C. Lu, G. Velisa, K. Jin, P. Xiu, Y. Zhang, H. Bei, and L. Wang: Scr. Mater., 2019, vol. 15, pp. 57–61.

    Article  Google Scholar 

  8. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Mater. Sci. Eng. A., 2008, vol. 491, pp. 154–58.

    Article  Google Scholar 

  9. S.W. Xin, M. Zhang, T.T. Yang, Y.Y. Zhao, B.R. Sun, and T.D. Shen: J. Alloys Compd., 2018, vol. 769, pp. 597–604.

    Article  CAS  Google Scholar 

  10. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao: Intermetallics., 2017, vol. 84, pp. 153–57.

    Article  CAS  Google Scholar 

  11. S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, and P.K. Liaw: Scr. Mater., 2019, vol. 158, pp. 50–56.

    Article  CAS  Google Scholar 

  12. Y. Cao, Y. Liu, Y. Li, B. Liu, J. Wang, M. Du, and R. Liu: Mater. Lett., 2019, vol. 246, pp. 186–89.

    Article  CAS  Google Scholar 

  13. J.M. Zhu, J.L. Meng, and J.L. Liang: Rare Met., 2016, vol. 35, pp. 385–89.

    Article  CAS  Google Scholar 

  14. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 881–93.

    Article  CAS  Google Scholar 

  15. S. Praveen, B.S. Murty, and R.S. Kottada: Mater. Sci. Eng. A., 2012, vol. 534, pp. 83–89.

    Article  CAS  Google Scholar 

  16. Y. Yin, J. Zhang, Q. Tan, W. Zhuang, N. Mo, M. Bermingham, and M.X. Zhang: Mater. Des., 2019, vol. 16, pp. 24–33.

    Article  Google Scholar 

  17. C. Xiang, H.M. Fu, Z.M. Zhang, E.H. Han, H.F. Zhang, J.Q. Wang, and G.D. Hu: J. Alloys Compd., 2020, vol. 818, p. 153352.

    Article  CAS  Google Scholar 

  18. X. Yao, J. Wei, and T. Li: IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 585, p. 012019.

    Article  CAS  Google Scholar 

  19. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov: J Alloys Compd., 2015, vol. 628, pp. 170–85.

    Article  CAS  Google Scholar 

  20. B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu: Mater. Sci. Eng. A., 2008, vol. 498, pp. 482–86.

    Article  Google Scholar 

  21. Y. Han, T. Wang, and S. Zhou: Mater. Sci. Forum., 2010, vol. 650, pp. 265–71.

    Article  Google Scholar 

  22. Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, and Y. Zhang: Mater. Des., 2016, vol. 96, pp. 10–15.

    Article  CAS  Google Scholar 

  23. A. Sharma, M.C. Oh, and B. Ahn: Mater. Sci. Eng. A., 2020, vol. 797, p. 140066.

    Article  CAS  Google Scholar 

  24. M. Liu, W. Xu, S. Zhang, Z. Wang, Z. Wang, B. Wang, D. Wang, and F. Li: J. Alloys Compd., 2020, vol. 824, p. 153881.

    Article  CAS  Google Scholar 

  25. Q. Tian, G. Zhang, K. Yin, L. Wang, W. Wang, W. Cheng, Y. Wang, and J.C. Huang: Intermetallics., 2020, vol. 119, p. 106707.

    Article  CAS  Google Scholar 

  26. Q. Tian, G. Zhang, K. Yin, W. Wang, W. Cheng, and Y. Wang: Mater. Charact., 2019, vol. 151, pp. 302–09.

    Article  CAS  Google Scholar 

  27. K.C. Cheng, J.H. Chen, S. Stadler, and S.H. Chen: Appl. Surf. Sci., 2019, vol. 478, pp. 478–86.

    Article  CAS  Google Scholar 

  28. X. Xian, Z. Zhong, B. Zhang, K. Song, C. Chen, S. Wang, J. Cheng, and Y. Wu: Mater. Des., 2017, vol. 121, pp. 229–36.

    Article  CAS  Google Scholar 

  29. Y. Yu, J. Wang, J. Li, H. Kou, and W. Liu: Mater. Lett., 2015, vol. 138, pp. 78–80.

    Article  CAS  Google Scholar 

  30. S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, p. 103505.

    Article  Google Scholar 

  31. M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, and A.H. Cheng: Mater. Res. Lett., 2016, vol. 4, pp. 90–95.

    Article  CAS  Google Scholar 

  32. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh: Intermetallics., 2012, vol. 26, pp. 44–51.

    Article  Google Scholar 

  33. J.M. Torralba, P. Alvaredo, and A.G. Junceda: Powder Met., 2019, vol. 62, pp. 84–114.

    Article  CAS  Google Scholar 

  34. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: Mater. Res. Lett., 2015, vol. 3(2), pp. 95–99.

    Article  CAS  Google Scholar 

  35. M.J. Chae, A. Sharma, M.C. Oh, and B. Ahn: Met. Mater. Int., 2020, vol. 27, pp. 629–38.

    Article  Google Scholar 

  36. B. Ren, Z. Liu, B. Cai, M. Wang, and L. Shi: Mater. Des., 2012, vol. 33, pp. 121–26.

    Article  CAS  Google Scholar 

  37. A. Shabani, M.R. Toroghinejad, A. Shafyei, and R.E. Loge: J. Mater. Eng. Perform., 2019, vol. 33, pp. 2388–98.

    Article  Google Scholar 

  38. A. Manzoni, H. Daoud, R.V. Olkl, U. Glatzel, and N. Wanderka: Ultramicroscopy., 2013, vol. 132, pp. 212–15.

    Article  CAS  Google Scholar 

  39. F. He, Z. Wang, Q. Wu, J. Li, J. Wang, and C.T. Liu: Scr. Mater., 2017, vol. 126, pp. 15–19.

    Article  CAS  Google Scholar 

  40. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Appl. Phys. Lett., 2007, vol. 90, p. 181904.

    Article  Google Scholar 

  41. Y.J. Chang, C.W. Tsai, A.C. Yeh, and J.W. Yeh: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 184–90.

    Google Scholar 

  42. Y. Zhang, H. Wu, X. Yu, D. Tang, R. Yuan, and H. Sun: J. Mater. Res. Technol., 2021, vol. 12, pp. 2114–27.

    Article  CAS  Google Scholar 

  43. W. Fang, R. Chang, X. Zhang, P. Ji, X. Wang, B. Liu, J. Li, X. He, X. Qu, and F. Yin: Mater. Sci. Eng. A., 2018, vol. 723, pp. 221–28.

    Article  CAS  Google Scholar 

  44. S. Hori, H. Tai, and E. Matsumoto: J. Jpn. Inst. Light Met., 1987, vol. 34(7), p. 377.

    Article  Google Scholar 

  45. J. Lin, M. Huang, W. Yang, and L. Xing: Sci. Rep., 2018, vol. 8, p. 15190.

    Article  Google Scholar 

  46. P. Wang, H. Cai, S. Zhou, and L. Xu: J. Alloys Compd., 2017, vol. 695, pp. 462–75.

    Article  CAS  Google Scholar 

  47. B. Gwalani, R.M. Pohan, J. Lee, B. Lee, R. Banerjee, H.J. Ryu, and S.H. Hong: Sci. Rep., 2018, vol. 9, p. 14085.

    Article  Google Scholar 

  48. A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar: J. Alloys Compd., 2018, vol. 748, pp. 889–97.

    Article  CAS  Google Scholar 

  49. P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li: Adv. Powder Technol., 2016, vol. 27, pp. 1128–33.

    Article  CAS  Google Scholar 

  50. K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 4696–4706.

    Article  CAS  Google Scholar 

  51. Z. Cai, X. Cui, G. Jin, Z. Liu, Y. Li, and M. Dong: Micron., 2017, vol. 103, pp. 84–89.

    Article  CAS  Google Scholar 

  52. S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, and J. Schroers: Acta Mater., 2019, vol. 166, pp. 677–86.

    Article  CAS  Google Scholar 

  53. Ł Rogal, Z. Szklarz, P. Bobrowski, D. Kalita, G. Garzeł, A. Tarasek, M. Kot, and M. Szlezynger: Met. Mater. Int., 2019, vol. 25, pp. 930–45.

    Article  CAS  Google Scholar 

  54. M.V. Klimova, D.G. Shaysultanov, S.V. Zherebtsov, and N.D. Stepanov: Mater. Sci. Eng. A., 2019, vol. 748, pp. 228–35.

    Article  CAS  Google Scholar 

  55. G. Hillel, L. Natovitz, S. Salhov, S. Haroush, M. Pinkas, and L. Meshi: Metals., 2020, vol. 10, p. 1275.

    Article  CAS  Google Scholar 

  56. Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, and N. Birbilis: Mater. Des., 2019, vol. 170, p. 107698.

    Article  CAS  Google Scholar 

  57. H. Liu, J. Liu, P. Chen, H. Yang, J. Hao, and X. Tian: J. Mater. Eng. Perform., 2019, vol. 28, pp. 1544–52.

    Article  CAS  Google Scholar 

  58. S. Guo and C.T. Liu: Prog. Nat. Sci., 2011, vol. 21, pp. 433–46.

    Article  Google Scholar 

  59. N.G. Jones, R. Izzo, P.M. Mignanelli, K.A. Christofidou, and H.J. Stone: Intermetallics., 2016, vol. 71, pp. 43–50.

    Article  CAS  Google Scholar 

  60. K.K. Alaneme, M.O. Bodunrin, and S.R. Oke: J. Mater. Res. Technol., 2016, vol. 5, pp. 384–93.

    Article  CAS  Google Scholar 

  61. C.T. Liu: Int. Mater. Rev., 1984, vol. 29, pp. 168–94.

    Article  CAS  Google Scholar 

  62. M. Heczko, V. Mazánová, R. Gröger, T. Záležák, M.S. Hooshmand, E.P. George, M.J. Mills, and A. Dlouhý: Acta Mater., 2021, vol. 208, p. 116719.

    Article  CAS  Google Scholar 

  63. Y. Yu, P. Shi, K. Feng, J. Liu, J. Cheng, Z. Qiao, J. Yang, J. Li, and W. Liu: Acta Metall. Sin. Engl., 2020, vol. 33, pp. 1077–90.

    Article  CAS  Google Scholar 

  64. D.J. Dingley and S.I. Wright: J. Appl. Crystallogr., 2009, vol. 42, pp. 234–41.

    Article  CAS  Google Scholar 

  65. G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, and E.P. George: Acta Mater., 2018, vol. 161, pp. 338–51.

    Article  CAS  Google Scholar 

  66. A. Zhang, J. Han, J. Meng, B. Su, and P. Li: Mater. Lett., 2016, vol. 181, pp. 82–85.

    Article  CAS  Google Scholar 

  67. T. Nagase, A. Shibata, M. Matsumuro, M. Takemura, and S. Semboshi: Mater. Des., 2019, vol. 181, p. 107900.

    Article  CAS  Google Scholar 

  68. L. Wei, X. Liu, Y. Gao, X. Peng, N. Hu, and M. Che: Intermetallics., 2021, vol. 138, p. 107310.

    Article  CAS  Google Scholar 

  69. M. Oh, A. Sharma, H. Lee, and B. Ahn: Intermetallics., 2021, vol. 139, p. 107369.

    Article  CAS  Google Scholar 

  70. Y. Zhang, Y. Ai, W. Chen, and S. Ouyang: J. Alloys Compd., 2022, vol. 900, p. 163352.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2021R1A2C1005478), (No. 2021R1F1A1062039), (No. 2021R1A4A1031357).

Author Contributions

MCO: conceptualization, methodology, validation, investigation, formal analysis, resources, writing–original draft, writing–review & editing. AS: investigation, resources, data curation, writing–review & editing, visualization, funding acquisition. HL: investigation, data curation, writing–original draft, writing–review & editing. BA: conceptualization, methodology, writing–review & editing, supervision, project administration, funding acquisition.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2021R1A2C1005478), (No. 2021R1F1A1062039), (No. 2021R1A4A1031357).

Data Availability

The data required to reproduce these findings cannot be shared at present, as the research data are confidential.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashutosh Sharma or Byungmin Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, M.C., Lee, H., Sharma, A. et al. Controlled Valence Electron Concentration Approach to Tailor the Microstructure and Phase Stability of an Entropy-Enhanced AlCoCrFeNi Alloy. Metall Mater Trans A 53, 1831–1844 (2022). https://doi.org/10.1007/s11661-022-06637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06637-x

Navigation