Skip to main content
Log in

Hardening Through an Ultrafine Carbide Precipitation in Austenite of a Low-Carbon Steel Containing Titanium and Tungsten

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, a significant hardening effect was obtained in a low-carbon steel containing Ti and W by performing a 20 pct hot compressive deformation and 60 seconds stress relaxation at 1148 K to 1198 K (875 °C to 925 °C) in the austenite region. TEM observation indicated that the hardening effect in martensite and bainite was closely associated with a fine dispersion of ultrafine precipitates with particle size of 1 to 10 nm at peak hardness. These ultrafine precipitates were identified as W, Fe-rich (WFeTi)C carbides with MC-type B1 structure, the crystal parameter of which is quite similar to austenite matrix. The precipitation mechanism of these ultrafine particles is discussed and the strength increment from precipitation hardening is estimated by applying a structure-based strength model and microstructure characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q. L. Yong: Microalloyed Steels-Physical and Mechanical Metallurgy, Metall. Industry Press, Beijing, 1989.

    Google Scholar 

  2. Q. L. Yong: Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  3. X. P. Mao, X. D. Huo, X. J. Sun, and Y. Z. Chai: J. Mater. Proc. Technol., 2010, vol. 210, pp. 1660-66.

    Article  CAS  Google Scholar 

  4. J. Moon, C. Lee, S. Uhm, and J. Lee: Acta Mater., 2006, vol. 54, pp. 1053-61.

    Article  CAS  Google Scholar 

  5. B. Dutta, E. J. Palmiere, and C. M. Sellars: Acta Mater., 2001, vol. 49, pp. 785-94.

    Article  CAS  Google Scholar 

  6. V. Rajinikanth, T. Kumar, and B. Mahato: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5816-38.

    Article  Google Scholar 

  7. S. F. Medina, A. Quispe, and M. Gomez: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1524-39.

    Article  Google Scholar 

  8. Q. L. Yong, and L. Zheng: Acta Metall. Sinica, 1984, vol. 20, pp. 9-16.

    Google Scholar 

  9. Y. Funakawa, T. Shiozaki, and K. Tomita: ISIJ Int., 2004, vol. 44, pp. 1945-51.

    Article  CAS  Google Scholar 

  10. Y. W. Kim, S. W. Song, and S. J. Seo: Mater. Sci. Eng. A, 2013, vol. 565, pp. 430-38.

    Article  CAS  Google Scholar 

  11. G.H. Gao: PhD thesis, Tsinghua University, Beijing, 2012.

  12. N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, and T. Furuhara: ISIJ Int., 2014, vol. 54, pp. 212-21.

    Article  CAS  Google Scholar 

  13. R. Okamoto, A. Borgenstam, and J. Agren: Acta Mater., 2010, vol. 58, pp. 4783-90.

    Article  CAS  Google Scholar 

  14. H. W. Yen, P. Y. Chen, and C. Y. Huang: Acta Mater., 2011, vol. 59, pp. 6264-74.

    Article  CAS  Google Scholar 

  15. P. Gong, X. G. Liu, A. Rijkenberg, and W. M. Rainforth: Acta Mater., 2018, vol. 161, pp. 374-87.

    Article  CAS  Google Scholar 

  16. E. Chandiran, Y. Sato, N. Kamikawa, G. Miyamoto, and T. Furuhara: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 4111–26.

  17. T. P. Wang, F. H. Kao, and S. H. Wang: Mater. Letters, 2011, vol. 65, pp. 396-99.

    Article  CAS  Google Scholar 

  18. K. Zhang, Z. D. Li, and Z. Q. Wang: J. Mater. Research, 2016, vol. 31, pp. 1254-63.

    Article  CAS  Google Scholar 

  19. M. G. Akben, T. Chandra, and P. Plassiard: Acta Metall, 1984, vol. 32, pp. 591-601.

    Article  CAS  Google Scholar 

  20. Z. Q. Wang, X. J. Sun, and Z. G. Yang: Mater. Sci. Eng. A, 2013, vol. 573, pp. 84-91.

    Article  CAS  Google Scholar 

  21. Z. Q. Wang, H. Chen, Z. G. Yang, and F. C. Jiang, Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1455-59.

    Article  Google Scholar 

  22. W. J. Liu, and J. J. Jonas: Metall Trans A, 1988, vol. 19A, pp. 1403-13.

    Article  CAS  Google Scholar 

  23. A. Pandit, A. Murugaiyan, and A. S. Podder: Scripta Mater., 2005, vol. 53, pp. 1309-14.

    Article  CAS  Google Scholar 

  24. Z. M. Wang, X. Y. Zhu, and W. Q. Liu: Chinese J. Mater. Research, 2010, vol. 24, pp. 217-22.

    CAS  Google Scholar 

  25. J. H. Jang, C. H. Lee, Y.U. Heo, and D.W. Suh, Acta Mater., 2012, vol. 60, pp. 208-17.

    Article  CAS  Google Scholar 

  26. D. Poddar, P. Cizek, H. Beladi, and P. D. Hodgson: Acta Mater., 2014, vol. 80, pp. 1-15.

    Article  CAS  Google Scholar 

  27. E. J. Pavlina, J. G. Speer, and T. C. J. Van: Scripta Mater., 66 (2012) 243-46.

    Article  CAS  Google Scholar 

  28. E. Hornbogen, and E. A. Starke: Acta Metall. Mater., 1993, vol. 41, pp. 1-16.

    Article  CAS  Google Scholar 

  29. L. García-Sesma, B. López, and B. Pereda: Mater. Sci. Eng. A, 2019, vol. 748, pp. 386-95.

    Article  Google Scholar 

  30. M. Zhang, Y. H. Wang, and C. L. Zheng: Mater. Sci. Eng. A, 2014, vol. 596, pp. 9-14.

    Article  CAS  Google Scholar 

  31. Z. Y. Zhang, X. J. Sun, and Z. D. Li: Chinese J. Mater. Research, 2015, vol. 29, pp. 269-76.

    CAS  Google Scholar 

  32. Z. L Guo, and W. Sha: Mater Trans A, 2002, vol. 43, pp. 1273-82.

    Article  CAS  Google Scholar 

  33. A. J. Kulkarni, and K. Krishnamurthy: J. Mater. Res., 2004, vol. 19, pp. 2765-73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support by the Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. XJCL201906), the Heilongjiang Natural Science Foundation (Nos. QC2018051 and LH2019E028), the Heilongjiang Postdoctoral Fund of China (No. LBH-Z16046), the China Postdoctoral Science Foundation (2017T100227 and 2019M651259), the Fundamental Research funds for the Central Universities (Nos. 3072019CF1012 and 3072019CFJ1002), and China Scholarship Council (CSC) Scholarship and Natural Sciences Foundation of China (Grant Nos. 51671065 and 51471094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiandong Wang or Haokai Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 25, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, J., Dong, H. et al. Hardening Through an Ultrafine Carbide Precipitation in Austenite of a Low-Carbon Steel Containing Titanium and Tungsten. Metall Mater Trans A 51, 3778–3788 (2020). https://doi.org/10.1007/s11661-020-05807-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05807-z

Navigation